Grid-based fault-tolerant event detection in wireless sensor networks

Author(s):  
Myeong-Hyeon Lee ◽  
Sung-Jib Yim ◽  
Yoon-Hwa Choi
Author(s):  
Steffen Ortmann ◽  
Michael Maaser ◽  
Peter Langendoerfer

Wireless Sensor Networks are the key-enabler for low cost ubiquitous applications in the area of homeland security, health-care, and environmental monitoring. A necessary prerequisite is reliable and efficient event detection in spite of sudden failures and environmental changes. Due to the fact that the sensors need to be low cost, they have only scarce resources leading to a certain level of failures of sensor nodes or sensing devices attached to the nodes. Available fault tolerant solutions are mainly customized approaches that revealed several shortcomings, particularly in adaptability and energy efficiency. The authors present a complete event detection concept including all necessary steps from formal event definition to autonomous device configuration. It features an event definition language that allows defining complex events as well as enhance the reliability by tailor-made voting schemes and application constraints. Based on that, this paper introduces a novel approach for self-adapting on-node and in-network processing, called Event Decision Tree (EDT). EDT autonomously adapts to available resources and environmental conditions, even though it requires to (re-)organize collaboration between neighboring nodes for evaluation. The authors’ approach achieves fine-grained event-related fault tolerance with configurable adaptation rate while enhancing maintainability and energy efficiency.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Kezhong Liu ◽  
Yang Zhuang ◽  
Zhibo Wang ◽  
Jie Ma

Reliable event detection is one of the most important objectives in wireless sensor networks (WSNs), especially in the presence of faulty nodes. Existing fault-tolerant event detection approaches usually take the probability of faulty nodes into account and fusion techniques to weaken the influence of faulty readings are usually developed. Through extensive experiments, we discover a phenomenon that event detection accuracy degrades quickly when the faulty sensors ratio reaches a critical value. This problem has not drawn enough attention and a solution to the problem is our concern. In this paper, a spatiotemporal correlation based fault-tolerant event detection scheme (STFTED) is proposed, which leverages a two-stage decision fusion and spatiotemporal correlation to improve the event detection quality. In the low-level local stage, a location-based weighted voting scheme (LWVS) is developed to make decision fusion locally on each sensor node, which is based on neighboring nodes and the geographical distributions of two decision quorums. In the high-level global stage, a Bayesian fusion algorithm is adopted to reach a consensus among individual detection decisions made by sensor nodes. Simulation results demonstrate that the proposed approach is highly effective and a better quality of event detection can be obtained compared with the optimal threshold decision schemes (OTDS).


Sign in / Sign up

Export Citation Format

Share Document