hyperspectral data
Recently Published Documents


TOTAL DOCUMENTS

2972
(FIVE YEARS 1216)

H-INDEX

83
(FIVE YEARS 19)

2022 ◽  
Vol 14 (2) ◽  
pp. 397
Author(s):  
Fangfang Zhang ◽  
Changkun Wang ◽  
Kai Pan ◽  
Zhiying Guo ◽  
Jie Liu ◽  
...  

Remote sensing of land surface mostly obtains a mixture of spectral information of soil and vegetation. It is thus of great value if soil and vegetation information can be acquired simultaneously from one model. In this study, we designed a laboratory experiment to simulate land surface compositions, including various soil types with varying soil moisture and vegetation coverage. A model of a one-dimensional convolutional neural network (1DCNN) was established to simultaneously estimate soil properties (organic matter, soil moisture, clay, and sand) and vegetation coverage based on the hyperspectral data measured in the experiment. The results showed that the model achieved excellent predictions for soil properties (R2 = 0.88–0.91, RPIQ = 4.01–5.78) and vegetation coverage (R2 = 0.95, RPIQ = 7.75). Compared with the partial least squares regression (PLSR), the prediction accuracy of 1DCNN improved 42.20%, 45.82%, 43.32%, and 36.46% in terms of the root-mean-squared error (RMSE) for predicting soil organic matter, sand, clay, and soil moisture, respectively. The improvement might be caused by the fact that the spectral preprocessing and spectral features useful for predicting soil properties were successfully identified in the 1DCNN model. For the prediction of vegetation coverage, although the prediction accuracy by 1DCNN was excellent, its performance (R2 = 0.95, RPIQ = 7.75, RMSE = 3.92%) was lower than the PLSR model (R2 = 0.98, RPIQ = 12.57, RMSE = 2.41%). These results indicate that 1DCNN can simultaneously predict soil properties and vegetation coverage. However, the factors such as surface roughness and vegetation type that could affect the prediction accuracy should be investigated in the future.


2022 ◽  
Vol 12 (2) ◽  
pp. 718
Author(s):  
Jiajia Yuan ◽  
Wei Fan ◽  
He Cheng ◽  
Dajie Huang ◽  
Tongyao Du

In this paper, we propose a fast interference spectral imaging system based on liquid crystal (LC) relaxation. The path delay of nematic LC during falling relaxation is used for the scanning of the optical path. Hyperspectral data can be obtained by Fourier transforming the data according to the path delay. The system can obtain two-dimensional spatial images of arbitrary wavelengths in the range of 300–1100 nm with a spectral resolution of 262 cm−1. Compared with conventional Fourier transform spectroscopy, the system can easily collect and integrate all valid information within 20 s. Based on the LC, controlling the optical path difference between two orthogonally polarized beams can avoid mechanical movement. Finally, the potential for application in contactless and rapid non-destructive optical component defect inspection is demonstrated.


2022 ◽  
Vol 14 (2) ◽  
pp. 346
Author(s):  
Florian Douay ◽  
Charles Verpoorter ◽  
Gwendoline Duong ◽  
Nicolas Spilmont ◽  
François Gevaert

The recent development and miniaturization of hyperspectral sensors embedded in drones has allowed the acquisition of hyperspectral images with high spectral and spatial resolution. The characteristics of both the embedded sensors and drones (viewing angle, flying altitude, resolution) create opportunities to consider the use of hyperspectral imagery to map and monitor macroalgae communities. In general, the overflight of the areas to be mapped is conconmittently associated accompanied with measurements carried out in the field to acquire the spectra of previously identified objects. An alternative to these simultaneous acquisitions is to use a hyperspectral library made up of pure spectra of the different species in place, that would spare field acquisition of spectra during each flight. However, the use of such a technique requires developed appropriate procedure for testing the level of species classification that can be achieved, as well as the reproducibility of the classification over time. This study presents a novel classification approach based on the use of reflectance spectra of macroalgae acquired in controlled conditions. This overall approach developed is based on both the use of the spectral angle mapper (SAM) algorithm applied on first derivative hyperspectral data. The efficiency of this approach has been tested on a hyperspectral library composed of 16 macroalgae species, and its temporal reproducibility has been tested on a monthly survey of the spectral response of different macro-algae species. In addition, the classification results obtained with this new approach were also compared to the results obtained through the use of the most recent and robust procedure published. The classification obtained shows that the developed approach allows to perfectly discriminate the different phyla, whatever the period. At the species level, the classification approach is less effective when the individuals studied belong to phylogenetically close species (i.e., Fucus spiralis and Fucus serratus).


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Chenjie Lin ◽  
Yueming Hu ◽  
Zhenhua Liu ◽  
Yiping Peng ◽  
Lu Wang ◽  
...  

Efficient monitoring of cultivated land quality (CLQ) plays a significant role in cultivated land protection. Soil spectral data can reflect the state of cultivated land. However, most studies have used crop spectral information to estimate CLQ, and there is little research on using soil spectral data for this purpose. In this study, soil hyperspectral data were utilized for the first time to evaluate CLQ. We obtained the optimal spectral variables from dry soil spectral data using a gradient boosting decision tree (GBDT) algorithm combined with the variance inflation factor (VIF). Two estimation algorithms (partial least-squares regression (PLSR) and back-propagation neural network (BPNN)) with 10-fold cross-validation were employed to develop the relationship model between the optimal spectral variables and CLQ. The optimal algorithms were determined by the degree of fit (determination coefficient, R2). In order to estimate CLQ at the regional scale, HuanJing-1A Hyperspectral Imager (HJ-1A HSI) data were transformed into dry soil spectral data using the linkage model of original soil spectral reflectance to dry soil spectral reflectance. This study was conducted in the Guangdong Province, China and the Conghua district within the same province. The results showed the following: (1) the optimal spectral variables selected from the dry soil spectral variables were 478 nm, 502 nm, 614 nm, 872 nm, 966 nm, 1007 nm, and 1796 nm. (2) The BPNN was the optimal model, with an R2(C) of 0.71 and a normalized root mean square error (NRMSE) of 12.20%. (3) The results showed the R2 of the regional-scale CLQ estimation based on the proposed method was 0.05 higher, and the NRMSE was 0.92% lower than that of the CLQ map obtained using the traditional method. Additionally, the NRMSE of the regional-scale CLQ estimation base on dry soil spectral variables from HJ-1A HSI data was 2.00% lower than that of the model base on the original HJ-1A HSI data.


2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Mengying Cui ◽  
Yonghua Sun ◽  
Chen Huang ◽  
Mengjun Li

The water components affecting turbidity are complex and changeable, and the spectral response mechanism of each water quality parameter is different. Therefore, this study mainly aimed at the turbidity monitoring by unmanned aerial vehicle (UAV) hyperspectral technology, and establishes a set of turbidity retrieval models through the artificial control experiment, and verifies the model’s accuracy through UAV flight and water sample data in the same period. The results of this experiment can also be extended to different inland waters for turbidity retrieval. Retrieval of turbidity values of small inland water bodies can provide support for the study of the degree of water pollution. We collected the images and data of aquaculture ponds and irrigation ditches in Dawa District, Panjin City, Liaoning Province. Twenty-nine standard turbidity solutions with different concentration gradients (concentration from 0 to 360 NTU—the abbreviation of Nephelometric Turbidity Unit, which stands for scattered turbidity.) were established through manual control and we simultaneously collected hyperspectral data from the spectral values of standard solutions. The sensitive band to turbidity was obtained after analyzing the spectral information. We established four kinds of retrieval, including the single band, band ratio, normalized ratio, and the partial least squares (PLS) models. We selected the two models with the highest R2 for accuracy verification. The band ratio model and PLS model had the highest accuracy, and R2 was, respectively, 0.65 and 0.72. The hyperspectral image data obtained by UAV were combined with the PLS model, which had the highest R2 to estimate the spatial distribution of water turbidity. The turbidity of the water areas in the study area was 5–300 NTU, and most of which are 5–80 NTU. It shows that the PLS models can retrieve the turbidity with high accuracy of aquaculture ponds, irrigation canals, and reservoirs in Dawa District of Panjin City, Liaoning Province. The experimental results are consistent with the conclusions of the field investigation.


2022 ◽  
Vol 14 (1) ◽  
pp. 217
Author(s):  
Bishwas Praveen ◽  
Vineetha Menon

Hyperspectral remote sensing presents a unique big data research paradigm through its rich information captured across hundreds of spectral bands, which embodies vital spatial and temporal information about the underlying land cover. Deep-learning-based hyperspectral data analysis methodologies have made significant advancements over the past few years. Despite their success, most deep learning frameworks for hyperspectral data classification tend to suffer in terms of computational and classification efficacy as the data size increases. This is largely due to their equal emphasis criteria on the rich spectral information present in the data, albeit all of the spectral information not being essential for hyperspectral data analysis. On the contrary, this redundant information present in the spectral bands can deter the performance of hyperspectral data analysis techniques. Therefore, in this work, we propose a novel bidirectional spectral attention mechanism, which is computationally efficient and capable of adaptive spectral information diversification through selective emphasis on spectral bands that comprise more information and suppress the ones with lesser information. The concept of 3D-convolutions in tandem with bidirectional long short-term memory (LSTM) is used in the proposed architecture as spectral attention mechanism. A feedforward neural network (FNN)-based supervised classification is then performed to validate the performance of our proposed approach. Experimental results reveal that the proposed hyperspectral data analysis model with spectral attention mechanism outperforms other spatial- and spectral-information-extraction-based hyperspectral data analysis techniques compared.


Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115540
Author(s):  
Ignazio Allegretta ◽  
Stijn Legrand ◽  
Matthias Alfeld ◽  
Concetta Eliana Gattullo ◽  
Carlo Porfido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document