manifold learning
Recently Published Documents


TOTAL DOCUMENTS

1333
(FIVE YEARS 347)

H-INDEX

38
(FIVE YEARS 8)

Author(s):  
E.B. Priyanka ◽  
S. Thangavel ◽  
Priyanka Prabhakaran

Oil and Gas Pipeline (OGP) projects face a wide scope of wellbeing and security Risk Factors (RFs) all around the world, especially in the oil and gas delivering nations having influencing climate and unsampled data. Lacking data about the reasons for pipeline risk predictor and unstructured data about the security of the OGP prevent endeavors of moderating such dangers. This paper, subsequently, means to foster a risk analyzing framework in view of a comprehensive methodology of recognizing, dissecting and positioning the related RFs, and assessing the conceivable pipeline characteristics. Hazard Mitigation Methods (HMMs), which are the initial steps of this approach. A new methodology has been created to direct disappointment investigation of pinhole erosion in pipelines utilizing the typical pipeline risk strategy and erosion climate reenactments during a full life pattern of the pipeline. Hence in the proposed work, manifold learning with rank based clustering algorithm is incorporated with the cloud server for improved data analysis. The probability risk rate is identified from the burst pressure by clustering the normal and leak category to improve the accuracy of the prediction system experimented on the lab-scale oil pipeline system. The numerical results like auto-correlation, periodogram, Laplace transformed P-P Plot are utilized to estimate the datasets restructured by the manifold learning approach. The obtained experimental results shows that the cloud server datasets are clustered with rank prioritization to make proactive decision in faster manner by distinguishing labelled and unlabeled pressure attributes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ramon Casanova ◽  
Robert G. Lyday ◽  
Mohsen Bahrami ◽  
Jonathan H. Burdette ◽  
Sean L. Simpson ◽  
...  

Background: fMRI data is inherently high-dimensional and difficult to visualize. A recent trend has been to find spaces of lower dimensionality where functional brain networks can be projected onto manifolds as individual data points, leading to new ways to analyze and interpret the data. Here, we investigate the potential of two powerful non-linear manifold learning techniques for functional brain networks representation: (1) T-stochastic neighbor embedding (t-SNE) and (2) Uniform Manifold Approximation Projection (UMAP) a recent breakthrough in manifold learning.Methods: fMRI data from the Human Connectome Project (HCP) and an independent study of aging were used to generate functional brain networks. We used fMRI data collected during resting state data and during a working memory task. The relative performance of t-SNE and UMAP were investigated by projecting the networks from each study onto 2D manifolds. The levels of discrimination between different tasks and the preservation of the topology were evaluated using different metrics.Results: Both methods effectively discriminated the resting state from the memory task in the embedding space. UMAP discriminated with a higher classification accuracy. However, t-SNE appeared to better preserve the topology of the high-dimensional space. When networks from the HCP and aging studies were combined, the resting state and memory networks in general aligned correctly.Discussion: Our results suggest that UMAP, a more recent development in manifold learning, is an excellent tool to visualize functional brain networks. Despite dramatic differences in data collection and protocols, networks from different studies aligned correctly in the embedding space.


2021 ◽  
Author(s):  
Guo hongbo ◽  
Jingjing Yu ◽  
Xuelei He ◽  
Huangjian Yi ◽  
Yuqing Hou ◽  
...  

2021 ◽  
Author(s):  
Prathyusha Akundi ◽  
Jayanthi Sivaswamy
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Andrew Lensen

<p>Unsupervised learning is a fundamental category of machine learning that works on data for which no pre-existing labels are available. Unlike in supervised learning, which has such labels, methods that perform unsupervised learning must discover intrinsic patterns within data.  The size and complexity of data has increased substantially in recent years, which has necessitated the creation of new techniques for reducing the complexity and dimensionality of data in order to allow humans to understand the knowledge contained within data. This is particularly problematic in unsupervised learning, as the number of possible patterns in a dataset grows exponentially with regard to the number of dimensions. Feature manipulation techniques such as feature selection (FS) and feature construction (FC) are often used in these situations. FS automatically selects the most valuable features (attributes) in a dataset, whereas FC constructs new, more powerful and meaningful features that provide a lower-dimensional space.  Evolutionary computation (EC) approaches have become increasingly recognised for their potential to provide high-quality solutions to data mining problems in a reasonable amount of computational time. Unlike other popular techniques such as neural networks, EC methods have global search ability without needing gradient information, which makes them much more flexible and applicable to a wider range of problems. EC approaches have shown significant potential in feature manipulation tasks with methods such as Particle Swarm Optimisation (PSO) commonly used for FS, and Genetic Programming (GP) for FC.  The use of EC for feature manipulation has, until now, been predominantly restricted to supervised learning problems. This is a notable gap in the research: if unsupervised learning is even more sensitive to high-dimensionality, then why is EC-based feature manipulation not used for unsupervised learning problems?  This thesis provides the first comprehensive investigation into the use of evolutionary feature manipulation for unsupervised learning tasks. It clearly shows the ability of evolutionary feature manipulation to improve both the performance of algorithms and interpretability of solutions in unsupervised learning tasks. A variety of tasks are investigated, including the well-established task of clustering, as well as more recent unsupervised learning problems, such as benchmark dataset creation and manifold learning.  This thesis proposes a new PSO-based approach to performing simultaneous FS and clustering. A number of improvements to the state-of-the-art are made, including the introduction of a new medoid-based representation and an improved fitness function. A sophisticated three-stage algorithm, which takes advantage of heuristic techniques to determine the number of clusters and to fine-tune clustering performance is also developed. Empirical evaluation on a range of clustering problems demonstrates a decrease in the number of features used, while also improving the clustering performance.  This thesis also introduces two innovative approaches to performing wrapper-based FC in clustering tasks using GP. An initial approach where constructed features are directly provided to the k-means clustering algorithm demonstrates the clear strength of GP-based FC for improving clustering results. A more advanced method is proposed that utilises the functional nature of GP-based FC to evolve more specific, concise, and understandable similarity functions for use in clustering algorithms. These similarity functions provide clear improvements in performance and can be easily interpreted by machine learning practitioners.  This thesis demonstrates the ability of evolutionary feature manipulation to solve unsupervised learning tasks that traditional methods have struggled with. The synthesis of benchmark datasets has long been a technique used for evaluating machine learning techniques, but this research is the first to present an approach that automatically creates diverse and challenging redundant features for a given dataset. This thesis introduces a GP-based FC approach that creates difficult benchmark datasets for evaluating FS algorithms. It also makes the intriguing discovery that using a mutual information-based fitness function with GP has the potential to be used to improve supervised learning tasks even when the labels are not utilised.  Manifold learning is an approach to dimensionality reduction that aims to reduce dimensionality by discovering the inherent lower-dimensional structure of a dataset. While state-of-the-art manifold learning approaches show impressive performance in reducing data dimensionality, they do so at the cost of removing the ability for humans to understand the data in terms of the original features. By utilising a GP-based approach, this thesis proposes new methods that can perform interpretable manifold learning, which provides deep insight into patterns in the data.  These four contributions clearly support the hypothesis that evolutionary feature manipulation has untapped potential in unsupervised learning. This thesis demonstrates that EC-based feature manipulation can be successfully applied to a variety of unsupervised learning tasks with clear improvements in both performance and interpretability. A plethora of future research directions in this area are also discovered, which we hope will lead to further valuable findings in this area.</p>


Sign in / Sign up

Export Citation Format

Share Document