Accelerating Uncertainty Quantification for Nonlinear Inverse Scattering Problems With High Contrast Media by Direct Envelope Methods and Krylov Subspace Iterative Integral Equation Solvers

Author(s):  
Xingguo Huang ◽  
Yong Hu
2019 ◽  
Vol 5 (2) ◽  
pp. 27 ◽  
Author(s):  
Yu Zhong ◽  
Kuiwen Xu

Inverse scattering problems (ISPs) stand at the center of many important imaging applications, such as geophysical explorations, industrial non-destructive testing, bio-medical imaging, etc. Recently, a new type of contraction integral equation for inversion (CIE-I) has been proposed to tackle the two-dimensional electromagnetic ISPs, in which the usually employed Lippmann–Schwinger integral equation (LSIE) is transformed into a new form with a modified medium contrast via a contraction mapping. With the CIE-I, the multiple scattering effects, i.e., the physical reason for the nonlinearity in the ISPs, is substantially suppressed in estimating the modified contrast, without compromising physical modeling. In this paper, we firstly propose to implement this new CIE-I for the three-dimensional ISPs. With the help of the FFT type twofold subspace-based optimization method (TSOM), when handling the highly nonlinear problems with strong scatterers, those with higher contrast and/or larger dimensions (in terms of wavelengths), the performance of the inversions with CIE-I is much better than the ones with the LSIE, wherein inversions usually converge to local minima that may be far away from the solution. In addition, when handling the moderate scatterers (those the LSIE modeling can still handle), the convergence speed of the proposed method with CIE-I is much faster than the one with the LSIE. Secondly, we propose to relax the contraction mapping condition, i.e., different contraction mappings are used in updating contrast sources and contrast, and we find that the convergence can be further accelerated. Several numerical tests illustrate the aforementioned interests.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1760
Author(s):  
Lu Zhang ◽  
Zhenchao Ma ◽  
Kuiwen Xu ◽  
Yu Zhong

A wavelet transform twofold subspace-based optimization method (WT-TSOM) is proposed to solve the highly nonlinear inverse scattering problems with contraction integral equation for inversion (CIE-I). While the CIE-I is able to suppress the multiple scattering effects within inversion (without compromising the accuracy of the physics), proper regularization is needed. In this paper, we investigate a new type subspace regularization technique based on wavelet expansions for the induced currents. We found that the bior3.5 wavelet is a good choice to stabilize the inversions with the CIE-I model and in the meanwhile it also can rectify the contrast profile. Numerical tests against both synthetic and experimental data show that WT-TSOM is a promising regularization technique for inversion with CIE-I.


Sign in / Sign up

Export Citation Format

Share Document