Wavelet-Based Subspace Regularization for Solving Highly Nonlinear Inverse Scattering Problems with Contraction Integral Equation
A wavelet transform twofold subspace-based optimization method (WT-TSOM) is proposed to solve the highly nonlinear inverse scattering problems with contraction integral equation for inversion (CIE-I). While the CIE-I is able to suppress the multiple scattering effects within inversion (without compromising the accuracy of the physics), proper regularization is needed. In this paper, we investigate a new type subspace regularization technique based on wavelet expansions for the induced currents. We found that the bior3.5 wavelet is a good choice to stabilize the inversions with the CIE-I model and in the meanwhile it also can rectify the contrast profile. Numerical tests against both synthetic and experimental data show that WT-TSOM is a promising regularization technique for inversion with CIE-I.