Optimization and evaluation of several digital communication systems disturbed by non-Gaussian noise (Ph.D. Thesis abstr.)

1972 ◽  
Vol 18 (6) ◽  
pp. 829-829
Author(s):  
D. Sheinbein
2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Valentine A. Aalo ◽  
George P. Efthymoglou

The received signal in many wireless communication systems comprises of the sum of waves with random amplitudes and random phases. In general, the composite signal consists of correlated nonidentical Gaussian quadrature components due to the central limit theorem (CLT). However, in the presence of a small number of random waves, the CLT may not always hold and the quadrature components may not be Gaussian distributed. In this paper, we assume that the fading environment is such that the quadrature components follow a correlated bivariate Student-t joint distribution. Then, we derive the envelope distribution of the received signal and obtain new expressions for the exact and high signal-to-noise (SNR) approximate average BER for binary modulations. It also turns out that the derived envelope pdf approaches the Rayleigh and Hoyt distributions as limiting cases. Using the derived envelope pdf, we investigate the effect of correlated nonidentical quadratures on the error rate performance of digital communication systems.


Sign in / Sign up

Export Citation Format

Share Document