On the Resistance of Boolean Functions Against Algebraic Attacks Using Univariate Polynomial Representation

2010 ◽  
Vol 56 (8) ◽  
pp. 4014-4024 ◽  
Author(s):  
Panagiotis Rizomiliotis
Author(s):  
M. Boumezbeur ◽  
S. Mesnager ◽  
K. Guenda

In this paper, we study the relationship between vectorial (Boolean) functions and cyclic codes in the context of algebraic attacks. We first derive a direct link between the annihilators of a vectorial function (in univariate form) and certain [Formula: see text]-ary cyclic codes (which we show that they are LCD codes). We also present some properties of those cyclic codes as well as their weight enumerator. In addition, we generalize the so-called algebraic complement and study its properties.


2007 ◽  
Vol 17 (06) ◽  
pp. 1985-1996 ◽  
Author(s):  
L. Z. GUO ◽  
S. A. BILLINGS

The identification of binary cellular automata from spatio-temporal binary patterns is investigated in this paper. Instead of using the usual Boolean or multilinear polynomial representation, the Fourier transform representation of Boolean functions is employed in terms of a Fourier basis. In this way, the orthogonal forward regression least-squares algorithm can be applied directly to detect the significant terms and to estimate the associated parameters. Compared with conventional methods, the new approach is much more robust to noise. Examples are provided to illustrate the effectiveness of the proposed approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gang Han ◽  
Yu Yu ◽  
Xiangxue Li ◽  
Qifeng Zhou ◽  
Dong Zheng ◽  
...  

Several factors (e.g., balancedness, good correlation immunity) are considered as important properties of Boolean functions for using in cryptographic primitives. A Boolean function is perfect algebraic immune if it is with perfect immunity against algebraic and fast algebraic attacks. There is an increasing interest in construction of Boolean function that is perfect algebraic immune combined with other characteristics, like resiliency. A resilient function is a balanced correlation-immune function. This paper uses bivariate representation of Boolean function and theory of finite field to construct a generalized and new class of Boolean functions on even variables by extending the Carlet-Feng functions. We show that the functions generated by this construction support cryptographic properties of 1-resiliency and (sub)optimal algebraic immunity and further propose the sufficient condition of achieving optimal algebraic immunity. Compared experimentally with Carlet-Feng functions and the functions constructed by the method of first-order concatenation existing in the literature on even (from 6 to 16) variables, these functions have better immunity against fast algebraic attacks. Implementation results also show that they are almost perfect algebraic immune functions.


Sign in / Sign up

Export Citation Format

Share Document