Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives

Author(s):  
Hongtian Chen ◽  
Bin Jiang ◽  
Steven X. Ding ◽  
Biao Huang
2020 ◽  
Vol 50 (4) ◽  
pp. 496-510
Author(s):  
Hongtian CHEN ◽  
Bin JIANG ◽  
Hui YI ◽  
Ningyun LU

2021 ◽  
pp. 147592172110360
Author(s):  
Dongming Hou ◽  
Hongyuan Qi ◽  
Honglin Luo ◽  
Cuiping Wang ◽  
Jiangtian Yang

A wheel set bearing is an important supporting component of a high-speed train. Its quality and performance directly determine the overall safety of the train. Therefore, monitoring a wheel set bearing’s conditions for an early fault diagnosis is vital to ensure the safe operation of high-speed trains. However, the collected signals are often contaminated by environmental noise, transmission path, and signal attenuation because of the complexity of high-speed train systems and poor operation conditions, making it difficult to extract the early fault features of the wheel set bearing accurately. Vibration monitoring is most widely used for bearing fault diagnosis, with the acoustic emission (AE) technology emerging as a powerful tool. This article reports a comparison between vibration and AE technology in terms of their applicability for diagnosing naturally degraded wheel set bearings. In addition, a novel fault diagnosis method based on the optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) and chirp Z-transform (CZT) is proposed to diagnose early composite fault defects in a wheel set bearing. The optimization CYCBD is adopted to enhance the fault-induced impact response and eliminate the interference of environmental noise, transmission path, and signal attenuation. CZT is used to improve the frequency resolution and match the fault features accurately under a limited data length condition. Moreover, the efficiency of the proposed method is verified by the simulated bearing signal and the real datasets. The results show that the proposed method is effective in the detection of wheel set bearing faults compared with the minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD) methods. This research is also the first to compare the effectiveness of applying AE and vibration technologies to diagnose a naturally degraded high-speed train bearing, particularly close to actual line operation conditions.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 38168-38178 ◽  
Author(s):  
Chao Cheng ◽  
Xinyu Qiao ◽  
Hao Luo ◽  
Wanxiu Teng ◽  
Mingliang Gao ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 10278-10293 ◽  
Author(s):  
Dandan Peng ◽  
Zhiliang Liu ◽  
Huan Wang ◽  
Yong Qin ◽  
Limin Jia

Author(s):  
Changzheng Fang ◽  
Xiaoyong Zhang ◽  
Yijun Cheng ◽  
Shengnan Wang ◽  
Li Zhang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chao Cheng ◽  
Ming Liu ◽  
Bangcheng Zhang ◽  
Xiaojing Yin ◽  
Caixin Fu ◽  
...  

It is very important for the normal operation of high-speed trains to assess the health status of the running gear system. In actual working conditions, many unknown interferences and random noises occur during the monitoring process, which cause difficulties in providing an accurate health status assessment of the running gear system. In this paper, a new data-driven model based on a slow feature analysis-support tensor machine (SFA-STM) is proposed to solve the problem of unknown interference and random noise by removing the slow feature with the fastest instantaneous change. First, the relationship between various statuses of the running gear system is analyzed carefully. To remove the random noise and unknown interferences in the running gear systems under complex working conditions and to extract more accurate data features, the SFA method is used to extract the slowest feature to reflect the general trend of system changes in data monitoring of running gear systems of high-speed trains. Second, slowness data were constructed in a tensor form to achieve an accurate health status assessment using the STM. Finally, actual monitoring data from a running gear system from a high-speed train was used as an example to verify the effectiveness and accuracy of the model, and it was compared with traditional models. The maximum sum of squared resist (SSR) value was reduced by 16 points, indicating that the SFA-STM method has the higher assessment accuracy.


2021 ◽  
Vol 68 (4) ◽  
pp. 3537-3547
Author(s):  
Luonan Chang ◽  
Zhen Liu ◽  
Yuan Shen ◽  
Guangjun Zhang

Sign in / Sign up

Export Citation Format

Share Document