Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach

2017 ◽  
Vol 28 (10) ◽  
pp. 2371-2381 ◽  
Author(s):  
Hao-Fan Yang ◽  
Tharam S. Dillon ◽  
Yi-Ping Phoebe Chen
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rongji Zhang ◽  
Feng Sun ◽  
Ziwen Song ◽  
Xiaolin Wang ◽  
Yingcui Du ◽  
...  

Traffic flow forecasting is the key to an intelligent transportation system (ITS). Currently, the short-term traffic flow forecasting methods based on deep learning need to be further improved in terms of accuracy and computational efficiency. Therefore, a short-term traffic flow forecasting model GA-TCN based on genetic algorithm (GA) optimized time convolutional neural network (TCN) is proposed in this paper. The prediction error was considered as the fitness value and the genetic algorithm was used to optimize the filters, kernel size, batch size, and dilations hyperparameters of the temporal convolutional neural network to determine the optimal fitness prediction model. Finally, the model was tested using the public dataset PEMS. The results showed that the average absolute error of the proposed GA-TCN decreased by 34.09%, 22.42%, and 26.33% compared with LSTM, GRU, and TCN in working days, while the average absolute error of the GA-TCN decreased by 24.42%, 2.33%, and 3.92% in weekend days, respectively. The results indicate that the model proposed in this paper has a better adaptability and higher prediction accuracy in short-term traffic flow forecasting compared with the existing models. The proposed model can provide important support for the formulation of a dynamic traffic control scheme.


2013 ◽  
Vol 680 ◽  
pp. 495-500 ◽  
Author(s):  
Jun Wei Gao ◽  
Zi Wen Leng ◽  
Bin Zhang ◽  
Xin Liu ◽  
Guo Qiang Cai

The urban traffic usually has the characteristics of time-variation and nonlinearity, real-time and accurate traffic flow forecasting has become an important component of the Intelligent Transportation System (ITS). The paper gives a brief introduction of the basic theory of Kalman filter, and establishes the traffic flow forecasting model on the basis of the adaptive Kalman filter, while the traditional Kalman filtering model has the shortcomings of lower forecasting accuracy and easily running into filtering divergence. The Sage&Husa adaptive filtering algorithm will appropriately estimate and correct the unknown or uncertain noise covariance, so as to improve the dynamic characteristics of the model. The simulation results demonstrate that the adaptive Kalman filtering forecasting model has stronger tracking capability and higher forecasting precision, which is applicable to the traffic flow forecasting.


Author(s):  
Hongqiong Huang ◽  
George F. List ◽  
Tianhao Tang ◽  
Alixandra Demers ◽  
Tianzhen Wang

Sign in / Sign up

Export Citation Format

Share Document