Distributed Synchronization of Delayed Neural Networks: Delay-Dependent Hybrid Impulsive Control

Author(s):  
Xinrui Ji ◽  
Jianquan Lu ◽  
Bangxin Jiang ◽  
Kaibo Shi
2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

This paper considers the problem of delay-dependent state estimation for neural networks with time-varying delays and stochastic parameter uncertainties. It is assumed that the parameter uncertainties are affected by the environment which is changed with randomly real situation, and its stochastic information such as mean and variance is utilized in the proposed method. By constructing a newly augmented Lyapunov-Krasovskii functional, a designing method of estimator for neural networks is introduced with the framework of linear matrix inequalities (LMIs) and a neural networks model with stochastic parameter uncertainties which have not been introduced yet. Two numerical examples are given to show the improvements over the existing ones and the effectiveness of the proposed idea.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Fang ◽  
Kang Yan ◽  
Kelin Li

This paper is concerned with the impulsive synchronization problem of chaotic delayed neural networks. By employing Lyapunov stability theorem, impulsive control theory and linear matrix inequality (LMI) technique, several new sufficient conditions ensuring the asymptotically synchronization for coupled chaotic delayed neural networks are derived. Based on these new sufficient conditions, an impulsive controller is designed. Moreover, the stable impulsive interval of synchronized neural networks is objectively estimated by combining the MATLAB LMI toolbox and one of the two given equations. Two examples with numerical simulations are given to illustrate the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hongjun Yu ◽  
Xiaozhan Yang ◽  
Chunfeng Wu ◽  
Qingshuang Zeng

This paper is concerned with global stability analysis for a class of continuous neural networks with time-varying delay. The lower and upper bounds of the delay and the upper bound of its first derivative are assumed to be known. By introducing a novel Lyapunov-Krasovskii functional, some delay-dependent stability criteria are derived in terms of linear matrix inequality, which guarantee the considered neural networks to be globally stable. When estimating the derivative of the LKF, instead of applying Jensen’s inequality directly, a substep is taken, and a slack variable is introduced by reciprocally convex combination approach, and as a result, conservatism reduction is proved to be more obvious than the available literature. Numerical examples are given to demonstrate the effectiveness and merits of the proposed method.


2019 ◽  
Vol 41 (13) ◽  
pp. 3714-3724 ◽  
Author(s):  
Tianhu Yu ◽  
Huamin Wang ◽  
Dengqing Cao

The synchronization problem of coupled neural networks via impulsive control is investigated in the present paper. Based on a time varying Lyapunov functional associated with the impulsive time sequence, the delay-dependent criteria in terms of linear matrix inequalities are derived to guarantee the synchronization of the coupled neural networks. The obtained criteria are closely related to both the lower and the upper bound of the adjacent impulsive instant difference. By solving the corresponding linear matrix inequalities, the synchronization criteria can be used to estimate the upper bound of both transmission delay and distributed-delay. The low-dimensional criteria also are obtained for the coupled neural networks with identical nodes. Finally, two examples are given to illustrate the validity of the proposed hybrid control.


Sign in / Sign up

Export Citation Format

Share Document