scholarly journals Synchronization of Chaotic Delayed Neural Networks via Impulsive Control

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Fang ◽  
Kang Yan ◽  
Kelin Li

This paper is concerned with the impulsive synchronization problem of chaotic delayed neural networks. By employing Lyapunov stability theorem, impulsive control theory and linear matrix inequality (LMI) technique, several new sufficient conditions ensuring the asymptotically synchronization for coupled chaotic delayed neural networks are derived. Based on these new sufficient conditions, an impulsive controller is designed. Moreover, the stable impulsive interval of synchronized neural networks is objectively estimated by combining the MATLAB LMI toolbox and one of the two given equations. Two examples with numerical simulations are given to illustrate the effectiveness of the proposed method.

2007 ◽  
Vol 03 (03) ◽  
pp. 321-330 ◽  
Author(s):  
XU-YANG LOU ◽  
BAO-TONG CUI

The passivity conditions for stochastic neural networks with time-varying delays and random abrupt changes are considered in this paper. Sufficient conditions on passivity of stochastic neural networks with time-varying delays and random abrupt changes are developed in the linear matrix inequality (LMI) setting. The results obtained in this paper improve and extend some of the previous results.


2019 ◽  
Vol 42 (2) ◽  
pp. 330-336
Author(s):  
Dongbing Tong ◽  
Qiaoyu Chen ◽  
Wuneng Zhou ◽  
Yuhua Xu

This paper proposes the [Formula: see text]-matrix method to achieve state estimation in Markov switched neural networks with Lévy noise, and the method is very distinct from the linear matrix inequality technique. Meanwhile, in light of the Lyapunov stability theory, some sufficient conditions of the exponential stability are derived for delayed neural networks, and the adaptive update law is obtained. An example verifies the condition of state estimation and confirms the effectiveness of results.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. Rajchakit ◽  
P. Niamsup ◽  
T. Rojsiraphisal ◽  
G. Rajchakit

This paper studies the problem of guaranteed cost control for a class of uncertain delayed neural networks. The time delay is a continuous function belonging to a given interval but not necessary to be differentiable. A cost function is considered as a nonlinear performance measure for the closed-loop system. The stabilizing controllers to be designed must satisfy some exponential stability constraints on the closed-loop poles. By constructing a set of augmented Lyapunov-Krasovskii functionals combined with Newton-Leibniz formula, a guaranteed cost controller is designed via memoryless state feedback control, and new sufficient conditions for the existence of the guaranteed cost state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2004 ◽  
Vol 14 (09) ◽  
pp. 3377-3384 ◽  
Author(s):  
XIAOFENG LIAO ◽  
KWOK-WO WONG ◽  
SHIZHONG YANG

Some sufficient conditions for the asymptotic stability of cellular neural networks with time delay are derived using the Lyapunov–Krasovskii stability theory for functional differential equations as well as the linear matrix inequality (LMI) approach. The analysis shows how some well-known results can be refined and generalized in a straightforward manner. Moreover, the stability criteria obtained are delay-independent. They are less conservative and restrictive than those reported so far in the literature, and provide a more general set of criteria for determining the stability of delayed cellular neural networks.


2011 ◽  
Vol 204-210 ◽  
pp. 1549-1552
Author(s):  
Li Wan ◽  
Qing Hua Zhou

Although ultimate boundedness of several classes of neural networks with constant delays was studied by some researchers, the inherent randomness associated with signal transmission was not taken account into these networks. At present, few authors study ultimate boundedness of stochastic neural networks and no related papers are reported. In this paper, by using Lyapunov functional and linear matrix inequality, some sufficient conditions ensuring the ultimate boundedness of stochastic neural networks with time-varying delays are established. Our criteria are easily tested by Matlab LMI Toolbox. One example is given to demonstrate our criteria.


2019 ◽  
Vol 41 (13) ◽  
pp. 3714-3724 ◽  
Author(s):  
Tianhu Yu ◽  
Huamin Wang ◽  
Dengqing Cao

The synchronization problem of coupled neural networks via impulsive control is investigated in the present paper. Based on a time varying Lyapunov functional associated with the impulsive time sequence, the delay-dependent criteria in terms of linear matrix inequalities are derived to guarantee the synchronization of the coupled neural networks. The obtained criteria are closely related to both the lower and the upper bound of the adjacent impulsive instant difference. By solving the corresponding linear matrix inequalities, the synchronization criteria can be used to estimate the upper bound of both transmission delay and distributed-delay. The low-dimensional criteria also are obtained for the coupled neural networks with identical nodes. Finally, two examples are given to illustrate the validity of the proposed hybrid control.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Yangling Wang ◽  
Jinde Cao

Without assuming the symmetry and irreducibility of the outer-coupling weight configuration matrices, we investigate the pinning synchronization of delayed neural networks with nonlinear inner-coupling. Some delay-dependent controlled stability criteria in terms of linear matrix inequality (LMI) are obtained. An example is presented to show the application of the criteria obtained in this paper.


2021 ◽  
Vol 26 (1) ◽  
pp. 93-112
Author(s):  
Youmei Zhou ◽  
Yajuan Liu ◽  
Jianping Zhou ◽  
Zhen Wang

The issue of quantized passive filtering for switched delayed neural networks with noise interference is studied in this paper. Both arbitrary and semi-Markov switching rules are taken into account. By choosing Lyapunov functionals and applying several inequality techniques, sufficient conditions are proposed to ensure the filter error system to be not only exponentially stable, but also exponentially passive from the noise interference to the output error. The gain matrix for the proposed quantized passive filter is able to be determined through the feasible solution of linear matrix inequalities, which are computationally tractable with the help of some popular convex optimization tools. Finally, two numerical examples are given to illustrate the usefulness of the quantized passive filter design methods.


2007 ◽  
Vol 17 (08) ◽  
pp. 2723-2738 ◽  
Author(s):  
XIA HUANG ◽  
JAMES LAM ◽  
JINDE CAO ◽  
SHENGYUAN XU

In this paper, the robust synchronization problem is addressed for recurrent neural networks with time-varying delay by linear feedback control. Robustness in the present paper is referred to as the allowance of parameters mismatch between the drive system and the response system. Sufficient conditions for robust synchronization with a synchronization error bound, expressed as linear matrix inequality (LMI), are derived based on Lyapunov–Krasovskii functionals. Both delay-dependent and delay-independent conditions are obtained. Two examples are given to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document