scholarly journals Robust State Estimation for Delayed Neural Networks with Stochastic Parameter Uncertainties

2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

This paper considers the problem of delay-dependent state estimation for neural networks with time-varying delays and stochastic parameter uncertainties. It is assumed that the parameter uncertainties are affected by the environment which is changed with randomly real situation, and its stochastic information such as mean and variance is utilized in the proposed method. By constructing a newly augmented Lyapunov-Krasovskii functional, a designing method of estimator for neural networks is introduced with the framework of linear matrix inequalities (LMIs) and a neural networks model with stochastic parameter uncertainties which have not been introduced yet. Two numerical examples are given to show the improvements over the existing ones and the effectiveness of the proposed idea.


2015 ◽  
Vol 93 (4) ◽  
pp. 398-408 ◽  
Author(s):  
O.M. Kwon ◽  
M.J. Park ◽  
S.M. Lee ◽  
E.J. Cha

This paper proposes new delay-dependent stability criteria for discrete-time neural networks with interval time-varying delays and probabilistic occurring parameter uncertainties. It is assumed that parameter uncertainties are changed with the environment, explored using random situations, and its stochastic information is included in the proposed method. By constructing a suitable Lyapunov–Krasovskii functional, new delay-dependent stability criteria for the concerned systems are established in terms of linear matrix inequalities, which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.



2006 ◽  
Vol 17 (4) ◽  
pp. 1077-1081 ◽  
Author(s):  
Y. He ◽  
Q.-G. Wang ◽  
M. Wu ◽  
C. Lin


2008 ◽  
Vol 71 (13-15) ◽  
pp. 2857-2867 ◽  
Author(s):  
He Huang ◽  
Gang Feng ◽  
Jinde Cao


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Bin Wen ◽  
Hui Li ◽  
Shouming Zhong

This paper studies the problem ofH∞state estimation for a class of delayed static neural networks. The purpose of the problem is to design a delay-dependent state estimator such that the dynamics of the error system is globally exponentially stable and a prescribedH∞performance is guaranteed. Some improved delay-dependent conditions are established by constructing augmented Lyapunov-Krasovskii functionals (LKFs). The desired estimator gain matrix can be characterized in terms of the solution to LMIs (linear matrix inequalities). Numerical examples are provided to illustrate the effectiveness of the proposed method compared with some existing results.



2019 ◽  
Vol 42 (2) ◽  
pp. 330-336
Author(s):  
Dongbing Tong ◽  
Qiaoyu Chen ◽  
Wuneng Zhou ◽  
Yuhua Xu

This paper proposes the [Formula: see text]-matrix method to achieve state estimation in Markov switched neural networks with Lévy noise, and the method is very distinct from the linear matrix inequality technique. Meanwhile, in light of the Lyapunov stability theory, some sufficient conditions of the exponential stability are derived for delayed neural networks, and the adaptive update law is obtained. An example verifies the condition of state estimation and confirms the effectiveness of results.



2011 ◽  
Vol 20 (04) ◽  
pp. 657-666
Author(s):  
CHOON KI AHN

In this paper, the delay-dependent state estimation problem for switched Hopfield neural networks with time-delay is investigated. Based on the Lyapunov–Krasovskii stability theory, a new delay-dependent state estimator for switched Hopfield neural networks is established to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The gain matrix of the proposed estimator is characterized in terms of the solution to a linear matrix inequality (LMI), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.



2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

The purpose of this paper is to investigate a delay-dependent robust synchronization analysis for coupled stochastic discrete-time neural networks with interval time-varying delays in networks coupling, a time delay in leakage term, and parameter uncertainties. Based on the Lyapunov method, a new delay-dependent criterion for the synchronization of the networks is derived in terms of linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii’s functional and utilizing Finsler’s lemma without free-weighting matrices. Two numerical examples are given to illustrate the effectiveness of the proposed methods.



2014 ◽  
Vol 129 ◽  
pp. 392-400 ◽  
Author(s):  
S. Lakshmanan ◽  
K. Mathiyalagan ◽  
Ju H. Park ◽  
R. Sakthivel ◽  
Fathalla A. Rihan


Sign in / Sign up

Export Citation Format

Share Document