Self-Verifiable Attribute-Based Keyword Search Scheme for Distributed Data Storage in Fog Computing with Fast Decryption

Author(s):  
Ke Gu ◽  
Wen Bin Zhang ◽  
Xiong Li ◽  
Wei Jia Jia
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Vasileios Moysiadis ◽  
Panagiotis Sarigiannidis ◽  
Ioannis Moscholios

In the emerging area of the Internet of Things (IoT), the exponential growth of the number of smart devices leads to a growing need for efficient data storage mechanisms. Cloud Computing was an efficient solution so far to store and manipulate such huge amount of data. However, in the next years it is expected that Cloud Computing will be unable to handle the huge amount of the IoT devices efficiently due to bandwidth limitations. An arising technology which promises to overwhelm many drawbacks in large-scale networks in IoT is Fog Computing. Fog Computing provides high-quality Cloud services in the physical proximity of mobile users. Computational power and storage capacity could be offered from the Fog, with low latency and high bandwidth. This survey discusses the main features of Fog Computing, introduces representative simulators and tools, highlights the benefits of Fog Computing in line with the applications of large-scale IoT networks, and identifies various aspects of issues we may encounter when designing and implementing social IoT systems in the context of the Fog Computing paradigm. The rationale behind this work lies in the data storage discussion which is performed by taking into account the importance of storage capabilities in modern Fog Computing systems. In addition, we provide a comprehensive comparison among previously developed distributed data storage systems which consist of a promising solution for data storage allocation in Fog Computing.


Author(s):  
D. V. Gribanov

Introduction. This article is devoted to legal regulation of digital assets turnover, utilization possibilities of distributed computing and distributed data storage systems in activities of public authorities and entities of public control. The author notes that some national and foreign scientists who study a “blockchain” technology (distributed computing and distributed data storage systems) emphasize its usefulness in different activities. Data validation procedure of digital transactions, legal regulation of creation, issuance and turnover of digital assets need further attention.Materials and methods. The research is based on common scientific (analysis, analogy, comparing) and particular methods of cognition of legal phenomena and processes (a method of interpretation of legal rules, a technical legal method, a formal legal method and a formal logical one).Results of the study. The author conducted an analysis which resulted in finding some advantages of the use of the “blockchain” technology in the sphere of public control which are as follows: a particular validation system; data that once were entered in the system of distributed data storage cannot be erased or forged; absolute transparency of succession of actions while exercising governing powers; automatic repeat of recurring actions. The need of fivefold validation of exercising governing powers is substantiated. The author stresses that the fivefold validation shall ensure complex control over exercising of powers by the civil society, the entities of public control and the Russian Federation as a federal state holding sovereignty over its territory. The author has also conducted a brief analysis of judicial decisions concerning digital transactions.Discussion and conclusion. The use of the distributed data storage system makes it easier to exercise control due to the decrease of risks of forge, replacement or termination of data. The author suggests defining digital transaction not only as some actions with digital assets, but also as actions toward modification and addition of information about legal facts with a purpose of its establishment in the systems of distributed data storage. The author suggests using the systems of distributed data storage for independent validation of information about activities of the bodies of state authority. In the author’s opinion, application of the “blockchain” technology may result not only in the increase of efficiency of public control, but also in the creation of a new form of public control – automatic control. It is concluded there is no legislation basis for regulation of legal relations concerning distributed data storage today.


Computers ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 142
Author(s):  
Obadah Hammoud ◽  
Ivan Tarkhanov ◽  
Artyom Kosmarski

This paper investigates the problem of distributed storage of electronic documents (both metadata and files) in decentralized blockchain-based b2b systems (DApps). The need to reduce the cost of implementing such systems and the insufficient elaboration of the issue of storing big data in DLT are considered. An approach for building such systems is proposed, which allows optimizing the size of the required storage (by using Erasure coding) and simultaneously providing secure data storage in geographically distributed systems of a company, or within a consortium of companies. The novelty of this solution is that we are the first who combine enterprise DLT with distributed file storage, in which the availability of files is controlled. The results of our experiment demonstrate that the speed of the described DApp is comparable to known b2c torrent projects, and subsequently justify the choice of Hyperledger Fabric and Ethereum Enterprise for its use. Obtained test results show that public blockchain networks are not suitable for creating such a b2b system. The proposed system solves the main challenges of distributed data storage by grouping data into clusters and managing them with a load balancer, while preventing data tempering using a blockchain network. The considered DApps storage methodology easily scales horizontally in terms of distributed file storage and can be deployed on cloud computing technologies, while minimizing the required storage space. We compare this approach with known methods of file storage in distributed systems, including central storage, torrents, IPFS, and Storj. The reliability of this approach is calculated and the result is compared to traditional solutions based on full backup.


Author(s):  
Alexander G. Marchuk ◽  
◽  
Sergey Nikolaevich Troshkov ◽  

This paper describes the experience of solving the problem of finding chains in the De Bruijn graph using parallel computations and distributed data storage.


Author(s):  
Lee P. Brintle ◽  
Elizabeth A. Koppes ◽  
J. K. Wu

Abstract The Tracked Vehicle Workstation (TVWS) is a distributed, object-oriented design environment that stores the large amounts of data associated with mechanical system’s design and analysis across heterogeneous UNIX† machines on a network. A Distributed ASCII File Storage (DAFS) server was developed to provide an easy to port, easy to modify means of retrieving and updating files on remote machines. This paper describes the different techniques and difficulties of methods the TVWS environment has used previously, including commercial solutions, single-node storage and the Network File System (NFS)‡, as well as a description of the current method utilizing DAFS.


Sign in / Sign up

Export Citation Format

Share Document