A Novel Active Power Filter for High-Voltage Power Distribution Systems Application

2007 ◽  
Vol 22 (2) ◽  
pp. 911-918 ◽  
Author(s):  
Changzheng Zhang ◽  
Qiaofu Chen ◽  
Youbin Zhao ◽  
Dayi Li ◽  
Yali Xiong
2012 ◽  
Vol 516-517 ◽  
pp. 1419-1424
Author(s):  
Wei Jun Yun ◽  
Gang Yao ◽  
Li Dan Zhou ◽  
Chen Chen ◽  
Jun Min Pan

Nonlinear loads generate a large amount of characteristic harmonics , deteriorate the power quality of power distribution systems in Advanced manufacturing enterprises. In this paper a novel hybrid active power filter is proposed which consists of a series thyristor switched filter (TSF) and small rated shunt active power filter(APF). TSF is tuned at fifth and seventh order harmonic frequencies. Consequently APF compensates for third and other order harmonics, unbalance current and reactive power. A new control method based on PHC strategy is presented for APF. The device has already got an application in one of the transformer substations of a automobile factory. It’s revealed that the proposed device can improve the power factor , reduce the harmonics injection and enhancement power quality of the power distribution systems.


2018 ◽  
Vol 11 (1) ◽  
pp. 154 ◽  
Author(s):  
Hafiz Munir ◽  
Jianxiao Zou ◽  
Chuan Xie ◽  
Josep Guerrero

Due to the excessive use of nonlinear loads and inverter interfaced distributed generators, harmonic issues have been regarded as a major concern in power distribution systems. Therefore, harmonic compensation in microgrids is a subject of current interest. Consequently, a novel direct harmonic voltage-controlled mode (VCM) active power filter (APF) is proposed to mitigate the harmonics in a cooperative manner and provide a better harmonic compensation performance of less than 5%. Due to the dispersive characteristics of renewable energy resources, voltage feedback based on a harmonic compensation control loop is implemented for the first time. This system can be smoothly combined with the current control loop. Our method proposes a better performance while mitigating the harmonics in comparison with conventional resistive active power filters (R-APF). Based on direct voltage detection at the point of common coupling (PCC), the proposed VCM-APF can therefore be seamlessly incorporated with multiple grid-connected generators (DGs) to enhance their harmonic compensation capabilities. The advantage of this scheme is that it avoids the need for designing and tuning the resistance, which was required in earlier conventional control schemes of R-APF for voltage unbalance compensation. Additionally, our scheme does not require the grid and load current measurements since these can be carried out at the PCC voltage, which further reduces the implementation cost of the system. Furthermore, the simulation results show the significance of proposed method.


2018 ◽  
Vol 1 (1) ◽  
pp. 54-66
Author(s):  
Rakan Khalil Antar ◽  
Basil Mohammed Saied ◽  
Rafid Ahmed Khalil

A new control strategy for active power filters is proposed, modeled and implemented in order to improve the power quality of a line commutated converter High voltage DC link. The ability of reactive power and harmonics reductions are generally met by using passive and active power filters. In this paper, modified active power filter with a modified harmonics pulse width modulation algorithm is used to minimize the source harmonics and force the AC supply current to be in the same phase with AC voltage source at both sending and receiving sides of a line commutated converter high voltage DC link. Therefore, it is considered as power factor corrector and harmonics eliminator with random variations in the load current. The modified harmonics pulse width modulation algorithm is applicable for active power filter based on a three-phase five-level and seven-level cascaded H-bridge voltage source inverter. Simulation results show that the suggested modified multilevel active power filters improve total harmonics distortion of both voltage and current with almost unity effective power factor at both AC sides of high voltage DC link. Therefore, modified active power filter is an effective tool for power quality improvement and preferable for line commutated converter high voltage DC link at different load conditions.


Sign in / Sign up

Export Citation Format

Share Document