voltage feedback
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 41)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
М.А. Ромащенко ◽  
А.В. Гудков

Рассмотрены вопросы оптимизации технологических процессов поиска и устранения неисправностей маломощных DC-DC преобразователей, изготавливаемых ООО «АЕДОН». Перечислены наиболее характерные неисправности, встречающиеся у импульсных источников питания малой мощности. Рассмотрены основные методы поиска и устранения неисправностей, применяемые в процессе диагностики импульсных преобразователей. Предложен подход, основывающийся на комбинировании различных методов диагностики и ремонта, позволяющий увеличить эффективность поиска и устранения неисправностей импульсных DC-DC преобразователей. Рассматриваемый подход позволил повысить оперативность технической диагностики и ремонта в условиях серийного производства, а также был эффективно использован при первоначальной подготовке молодых специалистов участка регулировки и тестирования. В качестве примера представлена процедура поиска и устранения причин повышенного напряжения холостого хода в маломощных импульсных источниках питания. Рассмотрены причины появления дефекта как в одиночных модулях, так и во всей партии. Проведено экспериментальное исследование влияния обратной связи на выходное напряжение модуля в режиме холостого хода, показано влияние возможных неисправностей. В результате применения данной процедуры в короткий срок была произведена диагностика и ремонт маломощного импульсного источника питания (ИИП), выполнена регулировка обратной связи по напряжению The article considers the issues of optimization of technological processes for troubleshooting low-power DC-DC converters manufactured by company AEDON. We listed the most typical malfunctions that occur in low-power switching power sources. We considered the main methods of troubleshooting used in the process of diagnostics of pulse converters. We propose an approach based on the combination of various diagnostic and repair methods, which allows one to increase the efficiency of troubleshooting of pulsed DC-DC converters. The considered approach allowed us to increase the efficiency of technical diagnostics and repair in the conditions of mass production, and was also effectively used in training of young specialists of the adjustment and testing subdivision. As an example, we present the procedure for finding and eliminating the causes of increased idle voltage in low-power switching power sources. We considered the reasons for the appearance of the defect both in single modules and in the entire batch. We carried out an experimental study of the effect of feedback on the output voltage of the module in the idle mode. We showed the influence of possible failures. As a result of the application of this procedure, we performed diagnostics and repair of a low-power switching power supplies in a short time and adjusted the voltage feedback


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 575
Author(s):  
Manuel Kuder ◽  
Anton Kersten ◽  
Jose-Luis Marques-Lopez ◽  
Julian Estaller ◽  
Johannes Buberger ◽  
...  

This paper presents a novel capacitor voltage balancing control approach for cascaded multilevel inverters with an arbitrary number of series-connected H-Bridge modules (floating capacitor modules) with asymmetric voltages, tiered by a factor of two (binary asymmetric). Using a nearest-level reference waveform, the balancing approach uses a one-step-ahead approach to find the optimal switching-state combination among all redundant switching-state combinations to balance the capacitor voltages as quickly as possible. Moreover, using a Lyapunov function candidate and considering LaSalle’s invariance principle, it is shown that an offline calculated trajectory of optimal switching-state combinations for each discrete output voltage level can be used to operate (asymptotically stable) the inverter without measuring any of the capacitor voltages, achieving a novel sensorless control as well. To verify the stability of the one-step-ahead balancing approach and its sensorless variant, a demonstrator inverter with 33 levels is operated in grid-tied mode. For the chosen 33-level converter, the NPC main-stage and the individual H-bridge modules are operated with an individual switching frequency of about 1 kHz and 2 kHz, respectively. The sensorless approach slightly reduced the dynamic system response and, furthermore, the current THD for the chosen operating point was increased from 3.28 to 4.58 in comparison with that of using the capacitor voltage feedback.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Satyajit H. Chincholkar ◽  
Sangmesh V. Malge ◽  
Sanjaykumar L. Patil

The positive output elementary Luo (POEL) converter is a fourth-order DC–DC converter having highly non-linear dynamic characteristics. In this paper, a new dynamic output voltage feedback controller is proposed to achieve output voltage regulation of the POEL converter. In contrast to the state-of-the-art current-mode controllers for the high-order boost converters, the proposed control strategy uses only the output voltage state variable for feedback purposes. This eliminates the need for the inductor current sensor to reduce the cost and complexity of implementation. The controller design is accompanied by a strong theoretical foundation and detailed stability analyses to obtain some insight into the controlled system. The performance of the proposed controller is then compared with a multi-loop hysteresis-based sliding-mode controller (SMC) to achieve the output voltage-regulation of the same POEL converter. The schemes are compared concerning ease of implementation, in particular, the number of state variables and current sensors required for implementation and the closed-loop dynamic performance. Experimental results illustrating the features of both controllers in the presence of input reference and load changes are presented.


Author(s):  
A. A. Golovkov ◽  
A. V. Fomin

Introduction. The ability to analytically determine some parameters of various radio devices, which are optimal according to the criterion of providing the set values of the modules and phases of transfer functions at the required number of frequencies, significantly reduces the time for numerical optimization of the rest of the parameters according to the criterion of forming the required frequency response and frequency response in the frequency band. Until now, such problems with respect to radio devices have been solved only for one stage of the "nonlinear part – matching device" or "matching device – nonlinear part" type. As a matching device, reactive, resistive, complex, or mixed quad-poles were used.Aim. Development of algorithms for parametric synthesis of radio devices with an arbitrary number of identical cascades of the "nonlinear part – matching reactive quadrupole" type according to the criterion of ensuring the specified frequency characteristics. Non-linear parts are represented as a non-linear element and parallel or serial current or voltage feedback.Materials and methods. Four-pole theory, matrix algebra, decomposition method, method of synthesis of microwave control devices, numerical optimization methods.Results. Systems of algebraic equations are formed and solved. Models of optimal quadrupole conductors are obtained in the form of mathematical expressions for determining the relationships between the elements of their classical transmission matrix and for finding the frequency dependences of the resistances of two-pole conductors.Conclusion. It is shown that the frequency characteristics of the studied radio devices from the same stages are identical or similar to the frequency characteristics of radio devices from the same stage, but with the signal source and load resistances changed in a certain way. Such schemes are called equivalent. A comparative analysis of the theoretical results (frequency response and frequency response of radio devices) obtained by mathematical modeling in the "MathCad" system, and the experimental results obtained by circuit modeling in the "OrCAD" and "MicroCap" systems, shows their satisfactory agreement.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 44
Author(s):  
Yun-Gyeong Oh ◽  
Woo-Young Choi ◽  
Jung-Min Kwon

This paper proposes a step-up DC–DC converter for a power electronic circuit for standalone photovoltaic systems with battery energy storages. The proposed DC–DC converter effectively converts low DC battery voltage into high DC-link voltage. It operates with soft-switching characteristics, which can reduce switching power losses. The proposed converter operates without output voltage feedback, which simplifies its control design. The operation principle of the proposed converter was described, along with the overall system configuration. The experimental results were discussed for the 500-W prototype system using a 12-V lead-acid battery.


2021 ◽  
Vol 70 (9&10) ◽  
pp. 156
Author(s):  
Long Yingwen ◽  
Sun Yuhong

THD and the amplitude balance of three-phase input current are an important index for the performance of three-phase power factor correction (PFC). In general, when the hardware and the load of three-phase PFC are confirmed, the THD and amplitude balance of three-phase input current mainly depend on voltage and current feedback loop of PFC. Firstly, this paper designs the traditional voltage and current feedback loop for three-phase PFC according to traditional small signal theory. Secondly, this paper studies the designing difficulty of large dc voltage ripple for PFC voltage controller and puts forward a new dc voltage ripple filter which can eliminate the ac component of sampling dc bus voltage. Finally, this paper proposes a novel filter with dc voltage ripple frequency adaption function to copy with the frequency variety of the voltage ripple caused by the change of the output inverter frequency. With the help of the proposed algorithm the distortion of three-phase 3 input current reference decreases rapidly, therefore, the low THD and good amplitude balance of three phase input current will be achieved.


Author(s):  
Nurfarahin Ishak ◽  
Chua King Lee ◽  
Siti Zarina Mohd Muji ◽  
Abdul Azlin Bin Abdul Latip

Magnetic induction tomography (MIT) is an imaging modality focused on tracing the transmission of electrical conductivity within the body. This technique used to image electromagnetic properties of an object by using the eddy current effect. This paper explains the primary analog transceiver circuit of MIT. This is a surrogate design of the analog system in the electronic components for pattern recognition and conditioning. This MIT system operating with a single excitation signal frequency at 10MHz. The input voltage received by the receiver sensor would become the circuit input which contained information. The four stages process in the receiver circuit successfully captured the signal from the transmitter. These subsystems have their functions and can be put into effect in many ways. Therefore, the circuit was used to be reliable at agarwood samples. The approach transceiver circuit were successful and functional for MIT coil sensing. The input voltage feedback depending on the conductivity of the samples. As the dielectric properties of samples are high, the input voltage at the receiver also high. Therefore, 10MHz can use for agriculture while this range of frequency is usually used in biomedical applications. Series – parallel circuit gives a greater induction factor and therefore more induced voltage for the load of the receiver.


Sign in / Sign up

Export Citation Format

Share Document