State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems

2016 ◽  
Vol 31 (6) ◽  
pp. 4935-4944 ◽  
Author(s):  
Shenglong Yu ◽  
Kianoush Emami ◽  
Tyrone Fernando ◽  
Herbert H. C. Iu ◽  
Kit Po Wong
2018 ◽  
Vol 8 (11) ◽  
pp. 2059 ◽  
Author(s):  
Seyed Naderi ◽  
Pooya Davari ◽  
Dao Zhou ◽  
Michael Negnevitsky ◽  
Frede Blaabjerg

The doubly-fed induction generator has significant features compared to the fixed speed wind turbine, which has popularised its application in power systems. Due to partial rated back-to-back converters in the doubly-fed induction generator, fault ride-through capability improvement is one of the important subjects in relation to new grid code requirements. To enhance the fault ride-through capability of the doubly-fed induction generator, many studies have been carried out. Fault current limiting devices are one of the techniques utilised to limit the current level and protect the switches, of the back-to-back converter, from over-current damage. In this paper, a review is carried out based on the fault current limiting characteristic of fault current limiting devices, utilised in the doubly-fed induction generator. Accordingly, fault current limiters and series dynamic braking resistors are mainly considered. Operation of all configurations, including their advantages and disadvantages, is explained. Impedance type and the location of the fault current limiting devices are two important factors, which significantly affect the behaviour of the doubly-fed induction generator in the fault condition. These two factors are studied by way of simulation, basically, and their effects on the key parameters of the doubly-fed induction generator are investigated. Finally, future works, in respect to the application of the fault current limiter for the improvement of the fault ride-through of the doubly-fed induction generator, have also been discussed in the conclusion section.


Author(s):  
Sayyed Ali Akbar Shahriari

Purpose This paper aims to propose an 18th-order nonlinear model for doubly fed induction generator (DFIG) wind turbines. Based on the proposed model, which is more complete than the models previously developed, an extended Kalman filter (EKF) is used to estimate the DFIG state variables. Design/methodology/approach State estimation is a popular approach in power system control and monitoring because of minimizing measurement noise level and obtaining non-measured state variables. To estimate all state variables of DFIG wind turbine, it is necessary to develop a model that considers all state variables. So, an 18th-order nonlinear model is proposed for DFIG wind turbines. EKF is used to estimate the DFIG state variables based on the proposed model. Findings An 18th-order nonlinear model is proposed for DFIG wind turbines. Furthermore, based on the proposed model, its state variables are estimated. Simulation studies are done in four cases to verify the ability of the proposed model in the estimation of state variables under noisy, wind speed variation and fault condition. The results demonstrate priority of the proposed model in the estimation of DFIG state variables. Originality/value Evaluating DFIG model to estimate its state variables precisely.


2017 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Zakaria Sabiri ◽  
Nadia Machkour ◽  
Nabila Rabbah ◽  
Mohammed Nahid ◽  
Elm'kaddem Kheddioui

Sign in / Sign up

Export Citation Format

Share Document