Adaptive Backstepping Hybrid Fuzzy Sliding Mode Control for Uncertain Fractional-Order Nonlinear Systems Based on Finite-Time Scheme

2020 ◽  
Vol 50 (4) ◽  
pp. 1559-1569 ◽  
Author(s):  
Shuai Song ◽  
Baoyong Zhang ◽  
Jianwei Xia ◽  
Zhengqiang Zhang
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Shuai Song ◽  
Ines Tejado Balsera ◽  
Leipo Liu ◽  
Lei Zhang

The synchronization of two fractional-order complex chaotic systems is discussed in this paper. The parameter uncertainty and external disturbance are included in the system model, and the synchronization of the considered chaotic systems is implemented based on the finite-time concept. First, a novel fractional-order nonsingular terminal sliding surface which is suitable for the considered fractional-order systems is proposed. It is proven that once the state trajectories of the system reach the proposed sliding surface they will converge to the origin within a given finite time. Second, in terms of the established nonsingular terminal sliding surface, combining the fuzzy control and the sliding mode control schemes, a novel robust single fuzzy sliding mode control law is introduced, which can force the closed-loop dynamic error system trajectories to reach the sliding surface over a finite time. Finally, using the fractional Lyapunov stability theorem, the stability of the proposed method is proven. The proposed method is implemented for synchronization of two fractional-order Genesio-Tesi chaotic systems with uncertain parameters and external disturbances to verify the effectiveness of the proposed fractional-order nonsingular terminal fuzzy sliding mode controller.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Junhai Luo ◽  
Heng Liu

This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.


2018 ◽  
Vol 37 (4) ◽  
pp. 1079-1096 ◽  
Author(s):  
Yunmei Fang ◽  
Juntao Fei ◽  
Tongyue Hu

An adaptive backstepping fuzzy sliding mode control is proposed to approximate the unknown system dynamics for a cantilever beam in this paper. The adaptive backstepping fuzzy sliding mode control is developed by combining the backstepping method with adaptive fuzzy strategy, where backstepping design approach is used to drive the trajectory tracking errors to converge to zero rapidly with global asymptotic stability and fuzzy logic system is designed to approximate the unknown nonlinear function in the adaptive backstepping fuzzy sliding mode control. The proposed backstepping controllers can ensure proper tracking of the reference trajectory, and impose a desired dynamic behavior, giving robustness and insensitivity to parameter variations. Numerical simulation for cantilever beam is investigated to verify the effectiveness of the proposed adaptive backstepping fuzzy sliding mode control scheme and demonstrate the satisfactory vibration suppression performance.


Sign in / Sign up

Export Citation Format

Share Document