reference trajectory
Recently Published Documents


TOTAL DOCUMENTS

589
(FIVE YEARS 195)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 794
Author(s):  
Manh Hung Nguyen ◽  
Hoang Vu Dao ◽  
Kyoung Kwan Ahn

In this paper, a novel adaptive robust control (ARC) scheme is proposed for electro-hydraulic servo systems (EHSSs) with uncertainties and disturbances. All dynamic functions in system dynamics are effectively approximated by multi-layer radial basis function neural network (RBF NN)-based approximators with online adaptive mechanisms. Moreover, neural network-based disturbance observers (NN-DOBs) are established to actively estimate and efficiently compensate for the effects of not only the matched/mismatched but also the imperfections of RBF NN-based approximators on the control system. Based on that, the nonlinear robust control law which integrates RBF NNs and NN-DOBs is synthesized via the sliding mode control (SMC) approach to guarantee the high-accuracy position tracking performance of the overall control system. Furthermore, the problem of the combination between DOBs and RBF NNs is first introduced in this paper to treat both disturbances and uncertainties in the EHSS. The stability of the recommended control mechanism is proven by using Lyapunov theory. Finally, numerical simulations with several distinct frequency levels of reference trajectory are conducted to convincingly demonstrate the effectiveness of the proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pengfei Zhang ◽  
Qiyuan Chen ◽  
Tingting Yang

This paper investigates the trajectory tracking problem of autonomous ground vehicles (AGVs). The dynamics considered feature external disturbances, model uncertainties, and actuator dead zones. First, a novel time-varying yaw guidance law is proposed based on the line of sight method. By a state transformation, the AGV is proved to realize trajectory tracking control under the premise of eliminating guidance deviation. Second, a fixed time dead zone compensation control method is introduced to ensure the yaw angle tracking of the presented guidance. Furthermore, an improved fixed-time disturbance observer is proposed to compensate for the influence of the actuator dead zone on disturbance observation. Finally, the trajectory tracking control strategy is designed, and simulation comparison shows the effectiveness of the compensate method. The CarSim–MATLAB cosimulation shows that the proposed control strategy effectively makes the AGV follow the reference trajectory.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lishengsa Yue ◽  
Mohamed Abdel-Aty ◽  
Zijin Wang

Purpose This study aims to evaluate the influence of connected and autonomous vehicle (CAV) merging algorithms on the driver behavior of human-driven vehicles on the mainline. Design/methodology/approach Previous studies designed their merging algorithms mostly based on either the simulation or the restricted field testing, which lacks consideration of realistic driving behaviors in the merging scenario. This study developed a multi-driver simulator system to embed realistic driving behavior in the validation of merging algorithms. Findings Four types of CAV merging algorithms were evaluated regarding their influences on driving safety and driving comfort of the mainline vehicle platoon. The results revealed significant variation of the algorithm influences. Specifically, the results show that the reference-trajectory-based merging algorithm may outperform the social-psychology-based merging algorithm which only considers the ramp vehicles. Originality/value To the best of the authors’ knowledge, this is the first time to evaluate a CAV control algorithm considering realistic driver interactions rather than by the simulation. To achieve the research purpose, a novel multi-driver driving simulator was developed, which enables multi-drivers to simultaneously interact with each other during a virtual driving test. The results are expected to have practical implications for further improvement of the CAV merging algorithm.


2021 ◽  
Vol 27 (6) ◽  
pp. 4-10
Author(s):  
Kagan Koray Ayten ◽  
Ahmet Dumlu

This paper is devoted to designing a fractional order Proportional Integral Derivative (PID) type sliding mode control method (FO-PIDSMC) for a non-linear liquid level coupled tank process system. By considering the individual advantages of the FO calculus and PID type SMC method, this proposed FO-PIDSMC technique is designed to integrate the FO calculus method with PID type SMC scheme to obtain an accurate and robust liquid level tracking in terms of the predefined reference trajectory. The real-time experimental results of the proposed controller suggest a dramatic improvement over the traditional process system controller methods in both trajectory tracking and required control action.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7794
Author(s):  
Jan Kadeřábek ◽  
Vadym Shapoval ◽  
Pavel Matějka ◽  
Milan Kroulík ◽  
František Kumhála

While the existing research provides a wealth of information about the static properties of RTK receivers, less is known about their dynamic properties, although it is clear that the vast majority of field operations take place when the machine is moving. A new method using a MRA for the evaluation of RTK receivers in movement with a precise circular reference trajectory (r = 3 m) was proposed. This reference method was developed with the greatest possible emphasis on the positional, time and repeatable accuracy of ground truth. Four phases of the measurement scenario (static, acceleration, uniform movement and deceleration) were used in order to compare four different types of RTK receiver horizontal operation accuracy over three measurement days. The worst result of one of the receivers was measured at SSR = 13.767% in dynamic movement. Since the same “low-cost” receiver without an INS unit had SSR = 98.14% in previous static measurements, so it can be assumed that the motion had a very significant effect on the dynamic properties of this receiver. On the other hand, the best “high-end” receiver with an INS unit had SSR = 96.938% during the dynamic testing scenarios. The median values of the deviations were always better during uniform movements than during acceleration or braking. In general, the positioning accuracy was worse in the dynamic mode than in the static one for all the receivers. Error indicators (RMSerr and Me) were found several times higher in the dynamic mode than in the static one. These facts should be considered in the future development of modern agricultural machinery and technology.


2021 ◽  
Vol 9 ◽  
Author(s):  
Weijiang Zheng ◽  
Bing Zhu

In this paper, a stochastic model predictive control (MPC) is proposed for the wheeled mobile robot to track a reference trajectory within a finite task horizon. The wheeled mobile robot is supposed to subject to additive stochastic disturbance with known probability distribution. It is also supposed that the mobile robot is subject to soft probability constraints on states and control inputs. The nonlinear mobile robot model is linearized and discretized into a discrete linear time-varying model, such that the linear time-varying MPC can be applied to forecast and control its future behavior. In the proposed stochastic MPC, the cost function is designed to penalize its tracking error and energy consumption. Based on quantile techniques, a learning-based approach is applied to transform the probability constraints to deterministic constraints, and to calculate the terminal constraint to guarantee recursive feasibility. It is proved that, with the proposed stochastic MPC, the tracking error of the closed-loop system is asymptotically average bounded. A simulation example is provided to support the theoretical result.


2021 ◽  
Author(s):  
Geesara Kulathunga ◽  
Dmitry Devitt ◽  
Alexandr Klimchik

Abstract We present an optimization-based reference trajectory tracking method for quadrotor robots for slow-speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy to Linear Quadratic Gaussian (LQG) in which Nonlinear Model Predictive Control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple-shooting (MS) is suggested over Direct-collocation (DC) for imposing constraints when modelling the NMPC. Incremental Euclidean Distance Transformation Map (EDTM) is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated, ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor’s current pose and the desired reference trajectory pose in each iteration. Finally, we evaluated the proposed method with two other approaches and showed that our proposal is better than those two in terms of reaching the goal without any collision. Additionally, we published a new dataset, which can be used for evaluating the performance of trajectory tracking algorithms.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7236
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

The study presents a novel event-triggered quasi-sliding mode control algorithm for linear discrete time systems. The problem is divided into two main parts. Firstly, the sliding mode control of perturbed discrete time systems is considered. In order to limit the impact of external disturbances to one sampling step only, a reference trajectory-based control law is introduced. The proposed control method drives the system’s representative point to an a priori designed reference position in each control step, thus minimizing the influence of disturbance and improving the robustness. Moreover, the reference trajectory is generated according to a novel reaching law, which ensures the nonswitching movement within the quasi-sliding mode band. In the latter part of the study, the proposed control strategy is supplemented with an event-triggering algorithm. In the modified strategy the control signal is only updated when a certain triggering condition occurs. Therefore, the need for communication between system elements is reduced. As follows, the delays in the digital control process may be reduced as well, without compromising the system’s robustness.


Sign in / Sign up

Export Citation Format

Share Document