An Optimized Spatial Sampling Strategy for Wide-View Planar Array 3-D Sonar Sensors

Author(s):  
Jonas Reijniers ◽  
Robin Kerstens ◽  
Jan Steckel
2010 ◽  
Vol 12 (3) ◽  
pp. 358-364 ◽  
Author(s):  
Liling GAO ◽  
Xinhu LI ◽  
Cuiping WANG ◽  
Quanyi QIU ◽  
Shenghui CUI ◽  
...  

2012 ◽  
Author(s):  
Kate C. Miller ◽  
Lindsay L. Worthington ◽  
Steven Harder ◽  
Scott Phillips ◽  
Hans Hartse ◽  
...  

Author(s):  
Jessica Schmidt ◽  
Viktoria Lindemann ◽  
Monica Olsen ◽  
Benedikt Cramer ◽  
Hans-Ulrich Humpf

AbstractA simple and effective approach for HPLC-MS/MS based multi-mycotoxin analysis in human urine samples was developed by application of dried urine spots (DUS) as alternative on-site sampling strategy. The newly developed method enables the detection and quantitation of 14 relevant mycotoxins and mycotoxin metabolites, including citrinin (CIT), dihydrocitrinone (DH-CIT), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 Toxin (T-2), HT-2 Toxin (HT-2), ochratoxin A (OTA), 2′R-ochratoxin A (2′R-OTA), ochratoxin α (OTα), tenuazonic acid and allo-tenuazonic acid (TeA + allo-TeA), zearalenone (ZEN), zearalanone (ZAN), α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL). Besides the spotting procedure, sample preparation includes enzymatic cleavage of glucuronic acid conjugates and stable isotope dilution analysis. Method validation revealed low limits of detection in the range of pg/mL urine and excellent apparent recovery rates for most analytes. Stability investigation of DUS displayed no or only slight decrease of the analyte concentration over a period of 28 days at room temperature. The new method was applied to the analysis of a set of urine samples (n = 91) from a Swedish cohort. The four analytes, DH-CIT, DON, OTA, and TeA + allo-TeA, could be detected and quantified in amounts ranging from 0.06 to 0.97 ng/mL, 3.03 to 136 ng/mL, 0.013 to 0.434 ng/mL and from 0.36 to 47 ng/mL in 38.5%, 70.3%, 68.1%, and 94.5% of the samples, respectively. Additional analysis of these urine samples with an established dilute and shoot (DaS) approach displayed a high consistency of the results obtained with both methods. However, due to higher sensitivity, a larger number of positive samples were observed using the DUS method consequently providing a suitable approach for human biomonitoring of mycotoxin exposure.


Sign in / Sign up

Export Citation Format

Share Document