stable isotope dilution analysis
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 9)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Thomas Sommerfeld ◽  
Christian Jung ◽  
Juliane Riedel ◽  
Tatjana Mauch ◽  
Andreas Sauer ◽  
...  

AbstractPolycyclic aromatic hydrocarbons (PAHs) are a large group of priority organic pollutants, which contaminate environmental compartments, food, and consumer products as well. Due to their frequent occurrence associated with elevated levels of PAHs, plastic and rubber parts of consumer products and toys are particular sources of exposure. Although European maximum levels exist for eight carcinogenic PAHs in consumer products and toys according to REACH Regulation (EC) No. 1907/2006, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of PAHs in rubber toys (BAM-B001) was developed according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fractions was based upon in-house study at BAM using stable isotope dilution analysis (SIDA) gas chromatography mass spectrometry (GC–MS). The obtained values were confirmed by the results of two interlaboratory comparison (ILC) studies with more than 50 expert laboratories from Germany and China. The mass fractions of 14 PAHs including all REACH and GS mark regulated compounds were certified ranging between 0.2 and 15.4 mg/kg accompanied by expanded uncertainties (coverage factor k = 2). In addition, informative values were determined for 4 PAHs, mainly due to higher uncertainties and/or lack of ILC data for confirmation. BAM-B001 is intended for analytical quality control particularly based on the AfPS GS 2019:01 PAK method and contributes to improve the chemical safety of consumer products including toys. Graphical abstract


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4368
Author(s):  
Elizabeth Genthner-Kreger ◽  
Keith R. Cadwallader

Experiments were conducted to identify a compound responsible for a spicy, woody, incense-like odor note in oak-aged spirits. The target compound was extracted from oak wood and various oak-aged spirits and analyzed by multidimensional (heart-cut) gas chromatography–mass spectrometry–olfactometry (MD–GC–MS–O), and was unambiguously identified as the sesquiterpene ketone, 5-isopropenyl-3,8-dimethyl-3,4,5,6,7,8-hexadydro-1(2H)-azulenone (rotundone). Quantitation of the trace-level target compound was done by stable isotope dilution analysis (SIDA) in a variety of oak-aged spirits, including bourbon, rye, Tennessee whiskey, scotch, rum, and tequila. The content of rotundone was found to increase as a function of years of barrel aging for 4-, 8-, and 12-year-old bourbons obtained from the same manufacturer, thus confirming its origin to be from oak. In addition, odor-activity values (OAVs) were compared for selected potent odorants, including rotundone, in the same 4-, 8-, and 12-year-old bourbons, which indicated the relative importance of rotundone in the overall flavor of oak-aged spirits.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 662
Author(s):  
Sandra Pati ◽  
Maria Tufariello ◽  
Pasquale Crupi ◽  
Antonio Coletta ◽  
Francesco Grieco ◽  
...  

The aim of this review is to explore and discuss the two main aspects related to a HeadSpace Solid Phase Micro-Extraction Gas-Chromatography/Mass-Spectrometry (HS-SPME-GC/MS) quantitative analysis of volatile compounds in wines, both being fundamental to obtain reliable data. In the first section, recent advances in the use of multivariate optimization approaches during the method development step are described with a special focus on factorial designs and response surface methodologies. In the second section, critical aspects related to quantification methods are discussed. Indeed, matrix effects induced by the complexity of the volatile profile and of the non-volatile matrix of wines, potentially differing between diverse wines in a remarkable extent, often require severe assumptions if a reliable quantification is desired. Several approaches offering different levels of data reliability including internal standards, model wine calibration, a stable isotope dilution analysis, matrix-matched calibration and standard addition methods are reported in the literature and are discussed in depth here.


Author(s):  
Jessica Schmidt ◽  
Viktoria Lindemann ◽  
Monica Olsen ◽  
Benedikt Cramer ◽  
Hans-Ulrich Humpf

AbstractA simple and effective approach for HPLC-MS/MS based multi-mycotoxin analysis in human urine samples was developed by application of dried urine spots (DUS) as alternative on-site sampling strategy. The newly developed method enables the detection and quantitation of 14 relevant mycotoxins and mycotoxin metabolites, including citrinin (CIT), dihydrocitrinone (DH-CIT), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 Toxin (T-2), HT-2 Toxin (HT-2), ochratoxin A (OTA), 2′R-ochratoxin A (2′R-OTA), ochratoxin α (OTα), tenuazonic acid and allo-tenuazonic acid (TeA + allo-TeA), zearalenone (ZEN), zearalanone (ZAN), α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL). Besides the spotting procedure, sample preparation includes enzymatic cleavage of glucuronic acid conjugates and stable isotope dilution analysis. Method validation revealed low limits of detection in the range of pg/mL urine and excellent apparent recovery rates for most analytes. Stability investigation of DUS displayed no or only slight decrease of the analyte concentration over a period of 28 days at room temperature. The new method was applied to the analysis of a set of urine samples (n = 91) from a Swedish cohort. The four analytes, DH-CIT, DON, OTA, and TeA + allo-TeA, could be detected and quantified in amounts ranging from 0.06 to 0.97 ng/mL, 3.03 to 136 ng/mL, 0.013 to 0.434 ng/mL and from 0.36 to 47 ng/mL in 38.5%, 70.3%, 68.1%, and 94.5% of the samples, respectively. Additional analysis of these urine samples with an established dilute and shoot (DaS) approach displayed a high consistency of the results obtained with both methods. However, due to higher sensitivity, a larger number of positive samples were observed using the DUS method consequently providing a suitable approach for human biomonitoring of mycotoxin exposure.


2020 ◽  
Vol 7 ◽  
Author(s):  
Lance Buckett ◽  
Simone Schinko ◽  
Corinna Urmann ◽  
Herbert Riepl ◽  
Michael Rychlik

Prenylated flavonoids from hops (Humulus lupulus) have become of interest in recent years due to a range of bioactivities. The potential health benefits of prenylated flavonoids include anti-cancerous activities and treatment of the metabolic syndrome among others. Since prenylated flavonoids from hops have shown pharmaceutical potential in clinical trials, robust analytical methods to determine their concentrations in food, supplements, and beverages are required. One such, the gold standard of analytical methods, is stable isotope dilution analysis due to its ability to compensate matrix effects and losses during sample work-up. As no commercial standards were available, the synthesis of seven different prenylated flavonoid isotopes utilizing various strategies (microwave assistance, acid base catalyst in the presence of deuterated substance and lastly, the use of Strykers catalyst) is described. The produced prenylated flavonoid isotopes were then applied in the first stable isotope dilution analysis method that quantified six natural prenylated flavonoids (Isoxanthohumol, Isoxanthohumol-C, 8-Prenylnaringenin, 6- Prenylnaringenin, Xanthohumol, and Xanthohumol-C) in beer, hop tea and hops to prove its applicability. The SIDA-LC-MS/MS method was validated resulting in LODs and LOQs for all analytes between 0.04 and 3.2 μg/L. Moreover, due to the simple clean-up the developed method allows the prospect for measuring clinical samples in the future.


Food Control ◽  
2020 ◽  
Vol 109 ◽  
pp. 106949 ◽  
Author(s):  
Birgitta Maria Kunz ◽  
Felicitas Wanko ◽  
Sabine Kemmlein ◽  
Arnold Bahlmann ◽  
Sascha Rohn ◽  
...  

2019 ◽  
Vol 8 ◽  
Author(s):  
Kathrin Matheis ◽  
Michael Granvogl

A systematic quantitation of selected odorants using stable isotope dilution analysis (SIDA) was performed in six native cold-pressed rapeseed oils with desired retention of bioactives and desired sensorial attributes (“positive controls”, PCs), in nine native cold-pressed rapeseed oils eliciting a fusty/musty off-flavor (OFs), and in two rapeseed samples, from which two of the nine fusty/musty off-flavor oils were pressed. These data were used as basis to find marker compounds for the fusty/musty off-flavor by means of multivariate methods. Obtained data clustered pairwise in a heatmap clearly showed that all PCs and OFs were very similar to each other in their own group concerning the selected compounds. Additionally, data were statistically evaluated using principal component analysis (PCA). Based on selected compounds, a high accordance of PCs, in parallel to a clear discrimination to the group of fusty/musty off-flavor oils and to the two rapeseed samples, was achieved. In a biplot, compounds with the highest differences between the two oil groups were identified as 4-methylphenol, 3-methylbutanoic acid, 2-phenylethanol, 2-ethyl-3,6-dimethylpyrazine, and 2-methylbutanoic acid. Thus, these compounds can be seen as marker compounds for the fusty/musty off-flavor oils and the seeds and can, therefore, serve for quality control of the raw material within a quick routine method.


2018 ◽  
Vol 91 (8) ◽  
pp. 1073-1082 ◽  
Author(s):  
Nadin Ulrich ◽  
Daniel Bury ◽  
Holger M. Koch ◽  
Maria Rüther ◽  
Till Weber ◽  
...  

Abstract Purpose The aim of this study was to get a first overview of the exposure to the solvents and reproductive toxicants N-methyl-2-pyrrolidone (NMP) and N-ethyl-2-pyrrolidone (NEP) in Germany. NMP and NEP metabolite concentrations were determined in 540 24-h urine samples of the German Environmental Specimen Bank collected from 1991 to 2014. With these data we were able to investigate NMP/NEP exposures over time and to evaluate associated risks. Methods NMP metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) and NEP metabolites 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI) were determined by stable isotope dilution analysis using solid phase extraction followed by derivatization (silylation) and GC–EI–MS/MS. Results We were able to quantify 5-HNMP and 2-HMSI in 98.0 and 99.6% and 5-HNEP and 2-HESI in 34.8 and 75.7% of the samples. Metabolite concentrations were rather steady over the timeframe investigated, even for NEP which has been introduced as an NMP substitute only in the last decade. Calculated median daily intakes in 2014 were 2.7 µg/kg bw/day for NMP and 1.1 µg/kg bw/day for NEP. For the combined risk assessment of NMP and NEP exposure, the hazard index based on the human biomonitoring assessment I values (HBM I values) was less than 0.1. Conclusions Based on the investigated subpopulation of the German population, individual and combined NMP and NEP exposures were within acceptable ranges in the investigated timeframe. Sources of NEP exposure in the 90s and 00s remain elusive.


Sign in / Sign up

Export Citation Format

Share Document