Hybrid User- and Network-Initiated Flow Handoff Support for Multihomed Mobile Hosts

Author(s):  
Q. Wang ◽  
R. Atkinson ◽  
C. Cromar ◽  
J. Dunlop
Keyword(s):  
2007 ◽  
Vol 51 (10) ◽  
pp. 2514-2528 ◽  
Author(s):  
Supeng Leng ◽  
Liren Zhang ◽  
Huirong Fu ◽  
Jianjun Yang

Author(s):  
Anirban Mondal ◽  
Sanjay Kumar Madria ◽  
Masaru Kitsuregawa

This paper proposes CADRE (Collaborative Allocation and De-allocation of Replicas with Efficiency), which is a dynamic replication scheme for improving the typically low data availability in dedicated and cooperative mobile ad-hoc peer-to-peer (M-P2P) networks. In particular, replica allocation and de-allocation are collaboratively performed in tandem to facilitate effective replication. Such collaboration is facilitated by a hybrid super-peer architecture in which some of the mobile hosts act as the ‘gateway nodes’ (GNs) in a given region. GNs facilitate both search and replication. The main contributions of CADRE are as follows. First, it facilitates the prevention of ‘thrashing’ conditions due to its collaborative replica allocation and de-allocation mechanism. Second, it considers the replication of images at different resolutions to optimize the usage of the generally limited memory space of the mobile hosts (MHs). Third, it addresses fair replica allocation across the MHs. Fourth, it facilitates the optimization of the limited energy resources of MHs during replication. The authors’ performance evaluation demonstrates that CADRE is indeed effective in improving data availability in M-P2P networks with significant reduction in query response times and low communication traffic during replication as compared to a recent existing scheme as well as a baseline approach, which does not consider any replication.


Author(s):  
Paramesh C. Upadhyay ◽  
Sudarshan Tiwari

The concept of Paging has been found useful in existing cellular networks for mobile users with low call-to-mobility ratio (CMR). It is necessary for fast mobility users to minimize the signaling burden on the network. Reduced signaling, also, conserves scarce wireless resources and provides power savings at user terminals. However, Mobile IP (MIP), a base protocol for IP mobility, does not support paging concept in its original form. Several paging schemes and micro-mobility protocols, centralized and distributed, have been proposed in literature to alleviate the inherent limitations of Mobile IP. In this paper, the authors propose three paging schemes for Distributed and Fixed Hierarchical Mobile IP (DFHMIP) and develop analytical models for them. Performance evaluations of these schemes have been carried out and results have been compared with DFHMIP without paging and with Dynamic Hierarchical Mobile IP (DHMIP) for low CMR values.


Author(s):  
J. Kaur ◽  
S. Kaur

Mobile Ad Hoc Networks (MANETs) are comprised of an arrangement of self-sorting mobile hosts furnished with wireless interaction devices gathered in groups without the need of any settled framework as well as centralized organization to maintain a system over radio connections. Every mobile node can react as a host and also, the router freely utilizes the wireless medium inside the correspondence range to deal with the interaction between huge quantities of individual mobile nodes by framing a correspondence system and trading the information among them without using any described group of the base station. A trust-based model in MANET estimates and sets up trust relationship among objectives. Trust-based routing is utilized to keep away data from different attackers like a wormhole, DOS, black-hole, selfish attack and so forth. Trust can be executed in different steps like reputation, subjective rationale and from the supposition of the neighboring node. A trust estimation approach not just watches the behavior of neighbor nodes, additionally it screens the transmission of the information packet in the identification of the route for exact estimation of trust value. A survey is carried out to find some of the limitations behind the existing works which has been done by the researchers to implement various approaches thus to build the trust management framework. Through the survey, it is observed that existing works focused only on the authenticated transmission of the message, how it transmits packets to the destination node securely using a trust-based scheme. And also, it is observed that the routing approach only focused on the key management issues. Certain limitation observed in the implemented approaches of existing work loses the reliability of framework. Thus, to withstand these issues it is necessary to establish a reliable security framework that protects the information exchanged among the users in a network while detecting various misbehaving attacks among the users. Confidentiality, as well as the integrity of information, can be secured by combining context-aware access control with trust management. The performance parameters should be evaluated with the previous works packet delivery ratio, packet drop, detection accuracy, number of false positives, and overhead.


Author(s):  
Paramesh C. Upadhyay ◽  
Sudarshan Tiwari

The concept of Paging has been found useful in existing cellular networks for mobile users with low call-to-mobility ratio (CMR). It is necessary for fast mobility users to minimize the signaling burden on the network. Reduced signaling, also, conserves scarce wireless resources and provides power savings at user terminals. However, Mobile IP (MIP), a base protocol for IP mobility, does not support paging concept in its original form. Several paging schemes and micro-mobility protocols, centralized and distributed, have been proposed in literature to alleviate the inherent limitations of Mobile IP. In this paper, the authors propose three paging schemes for Distributed and Fixed Hierarchical Mobile IP (DFHMIP) and develop analytical models for them. Performance evaluations of these schemes have been carried out and results have been compared with DFHMIP without paging and with Dynamic Hierarchical Mobile IP (DHMIP) for low CMR values.


Sign in / Sign up

Export Citation Format

Share Document