Time Synchronization Protocol for Small-Scale Wireless Sensor Networks

Author(s):  
Yu-Hsiang Huang ◽  
Sau-Hsuan Wu
Author(s):  
Chao Shi ◽  
Wei Zhang ◽  
Lihong Zhang

This paper proposed a pulse-coupled synchronization protocol for wireless sensor networks. The time information of the node can be encoded at the Mac layer and then sent and received in the form of pulse waves. During the exchange of time information between a pair of nodes, one node will adjust its own clock information according to certain rules after receiving the pulse time signal of the other node. This process is repeated in the entire wireless sensor network. Under certain environmental and estimated parameter conditions, all nodes in the network can finally converge to a coherent frequency and phase, thus realizing time synchronization. The relationship between time synchronization and coupling coefficient was proved theoretically, and the optimal coupling coefficient was derived. An optimized algorithm was proposed after the optimization of the protocol. Finally, the correctness of the proposed protocol and its optimized algorithm was verified by data simulation.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3020 ◽  
Author(s):  
Linh-An Phan ◽  
Taejoon Kim ◽  
Taehong Kim ◽  
JaeSeang Lee ◽  
Jae-Hyun Ham

The time synchronization protocol is indispensable in various applications of wireless sensor networks, such as scheduling, monitoring, and tracking. Numerous protocols and algorithms have been proposed in recent decades, and many of them provide micro-scale resolutions. However, designing and implementing a time synchronization protocol in a practical wireless network is very challenging compared to implementation in a wired network; this is because its performance can be deteriorated significantly by many factors, including hardware quality, message delay jitter, ambient environment, and network topology. In this study, we measure the performance of the Flooding Time Synchronization Protocol (FTSP) and Gradient Time Synchronization Protocol (GTSP) in terms of practical network conditions, such as message delay jitter, synchronization period, network topology, and packet loss. This study provides insights into the operation and optimization of time synchronization protocols. In addition, the performance evaluation identifies that FTSP is highly affected by message delay jitter due to error accumulation over multi-hops. We demonstrate that the proposed extended version of the FTSP (E-FTSP) alleviates the effect of message delay jitter and enhances the overall performance of FTSP in terms of error, time, and other factors.


Sign in / Sign up

Export Citation Format

Share Document