Chalcopyrite Thin-Film Tandem Solar Cells with 1.5 V Open-Circuit-Voltage

Author(s):  
Tokio Nakada ◽  
Shunsuke Kijima ◽  
Yasuhito Kuromiya ◽  
Ryota Arai ◽  
Yasuyuki Ishii ◽  
...  
2019 ◽  
Author(s):  
Kristina M. Winkler ◽  
Ines Ketterer ◽  
Alexander J. Bett ◽  
Özde Kabakli ◽  
Martin Bivour ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui He ◽  
Tingting Chen ◽  
Zhipeng Xuan ◽  
Tianzhen Guo ◽  
Jincheng Luo ◽  
...  

Abstract Wide-bandgap (wide-E g , ∼1.7 eV or higher) perovskite solar cells (PSCs) have attracted extensive attention due to the great potential of fabricating high-performance perovskite-based tandem solar cells via combining with low-bandgap absorbers, which is considered promising to exceed the Shockley–Queisser efficiency limit. However, inverted wide-E g PSCs with a minimized open-circuit voltage (V oc) loss, which are more suitable to prepare all-perovskite tandem devices, are still lacking study. Here, we report a strategy of adding 1,3,5-tris (bromomethyl) benzene (TBB) into wide-E g perovskite absorber to passivate the perovskite film, leading to an enhanced average V oc. Incorporation of TBB prolongs carrier lifetimes in wide-E g perovskite due to reduction of defects in perovskites and makes a better energy level matching between perovskite absorber and electron transport layer. As a result, we achieve the power conversion efficiency of 17.12% for our inverted TBB-doped PSC with an enhanced V oc of 1.19 V, compared with that (16.14%) for the control one (1.14 V).


2014 ◽  
Vol 562 ◽  
pp. 430-434 ◽  
Author(s):  
Jonathan Plentz ◽  
Gudrun Andrä ◽  
Annett Gawlik ◽  
Ingmar Höger ◽  
Guobin Jia ◽  
...  

2014 ◽  
Vol 105 (17) ◽  
pp. 173902 ◽  
Author(s):  
Teodor Todorov ◽  
Talia Gershon ◽  
Oki Gunawan ◽  
Charles Sturdevant ◽  
Supratik Guha

2015 ◽  
Vol 8 (1) ◽  
pp. 303-316 ◽  
Author(s):  
Abd. Rashid bin Mohd Yusoff ◽  
Dongcheon Kim ◽  
Hyeong Pil Kim ◽  
Fabio Kurt Shneider ◽  
Wilson Jose da Silva ◽  
...  

We propose that 1 + 1 + 1 triple-junction solar cells can provide an increased efficiency, as well as a higher open circuit voltage, compared to tandem solar cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
F. Urbain ◽  
K. Wilken ◽  
V. Smirnov ◽  
O. Astakhov ◽  
A. Lambertz ◽  
...  

Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H) have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC) measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE) and a photocurrent of 5.3 mA/cm2at 0 V versus RHE (under halogen lamp illumination). Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.


Sign in / Sign up

Export Citation Format

Share Document