Improved PSO Algorithm for Power Distribution Network Expanding Path Optimization

Author(s):  
Mingquan Zhang ◽  
Xiaorong Cheng ◽  
Huawei Mei ◽  
Chao Dong
Author(s):  
Alok Kumar Mishra ◽  
Soumya Ranjan Das ◽  
Prakash Kumar Ray ◽  
Ranjan Kumar Mallick ◽  
Himansu Das

Aims : The main focus in this work is to improve balanced and sinusoidal grid currents by feeding compensating current at point of common coupling (PCC). Background: In recent years the advancement in electronics and electrical appliances are widely improved and are also more sophisticated. These appliances require uninterrupted and quality power. Therefore in the growing power system scenario, several issues like malfunction of electrical sensitive devices, overheat in transformer, interference in communication, failures in computer network etc., adversely affects the power quality (PQ). These issues are generated due to rapid use of non-linear loads in three-phase system which generates harmonics in the system. To overcome from these PQ issues, several PQ mitigation custom power devices are integrated in power distribution network. But, the conventional PQ mitigation devices are insufficient to eliminate PQ problems such as current and voltage harmonics, voltage sag/swell and voltage unbalances associated with the power distribution network. Objective : The objective of using A-PSO is to find the global optimum of the spread factor parameter at the upper level. APSO, has a faster convergence speed and correct response compared to the PSO algorithm. Method : SO A-PSO M p-q. Result: A-PSO is giving better results than PSO. Conclusion : A three-phase system with SHAPF injected at PCC is proposed in this paper. The SHAPF injects filter current at PCC for supressing the harmonics using a modified pq scheme. For controlling the PIC, two optimised parameters are discussed and found that reducing the harmonics distortions using A-PSO is giving better results compare to the conventional PSO.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


2015 ◽  
Vol 42 ◽  
pp. 9-16 ◽  
Author(s):  
Stefano Rinaldi ◽  
Paolo Ferrari ◽  
Alessandra Flammini ◽  
Mattia Rizzi ◽  
Emiliano Sisinni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document