scholarly journals A Generic Framework to Analyze and Improve Patient Pathways within a Healthcare Network Using Process Mining and Discrete-Event Simulation

Author(s):  
Thomas Franck ◽  
Paolo Bercelli ◽  
Saber Aloui ◽  
Vincent Augusto
2020 ◽  
Vol 11 (2) ◽  
pp. 51-72
Author(s):  
Mario Jadrić ◽  
Ivana Ninčević Pašalić ◽  
Maja Ćukušić

AbstractBackground: Over the last 20 years, process mining has become a vibrant research area due to the advances in data management technologies and techniques and the advent of new process mining tools. Recently, the links between process mining and simulation modelling have become an area of interest.Objectives: The objective of the paper was to demonstrate and assess the role of process mining results as an input for discrete-event simulation modelling, using two different datasets, one of which is considered data-poor while the other one data-rich.Methods/Approach: Statistical calculations and process maps were prepared and presented based on the event log data from two case studies (smart mobility and higher education) using a process mining tool. Then, the implications of the results across the building blocks (entities, activities, control-flows, and resources) of simulation modelling are discussed.Results: Apart from providing a rationale and the framework for simulation that is more efficient modelling based on process mining results, the paper provides contributions in the two case studies by deliberating and identifying potential research topics that could be tackled and supported by the new combined approach.Conclusions: Event logs and process mining provide valuable information and techniques that could be a useful input for simulation modelling, especially in the first steps of building discreteevent models, but also for validation purposes.


Digital Twin ◽  
2022 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
Abdallah Karakra ◽  
Franck Fontanili ◽  
Elyes Lamine ◽  
Jacques Lamothe

Background: Discrete Event Simulation (DES) is one of the many tools and methods used in the analysis and improvement of healthcare services. Indeed, DES provides perhaps the most powerful and intuitive method for analyzing, evaluating, and improving complex healthcare systems. This paper highlights the process of developing a Digital Twin (DT) framework based on online DES to run the DES model in parallel with the real world in real-time. Methods: This paper suggests a new methodology that uses DES connected to the Internet of Things (IoT) devices to build a DT platform of patient pathways in a hospital for near real-time monitoring and predictive simulation. An experimental platform that mimics the behavior of a hospital has been used to validate this methodology. Results: The application of the proposed methodology allowed us to test the monitoring functionality in the DT. Therefore, we noticed that the DT behaves exactly as the emulator does in near real-time, we also tested the prediction functionality and we noticed that the DT provides us with a proactive overview for the near future of the patient pathways. The predictive functionality of this DT must be improved depending on the various reasons mentioned in this article. Conclusions: This paper presents a new methodology called HospiT'Win that uses DES and IoT devices to develop a DT of patient pathways in hospitals. This DT consists of two real-time models, a DT for Monitoring (DTM) and a DT for Predicting (DTP). An experimental platform with an emulator of a real hospital was used to validate this methodology before connecting to the real hospital. In the DTP, "dynamic" empirical distributions were used to perform a predictive simulation for the near future. In future research, some additional features and machine learning algorithms will be used to improve the proposed DT models.


Sign in / Sign up

Export Citation Format

Share Document