scholarly journals Sudden cardiac death in childhood hypertrophic cardiomyopathy is best predicted by a combination of ECG Risk‐score and HCMRisk‐Kids score

2021 ◽  
Author(s):  
Ingegerd Östman‐Smith ◽  
Gunnar Sjöberg ◽  
Jenny Alenius Dahlqvist ◽  
Per Larsson ◽  
Eva Fernlund
Author(s):  
Hyun-Jung Lee ◽  
Hyung-Kwan Kim ◽  
Sang Chol Lee ◽  
Jihoon Kim ◽  
Jun-Bean Park ◽  
...  

Abstract Aims We investigated the prognostic role of left ventricular global longitudinal strain (LV-GLS) and its incremental value to established risk models for predicting sudden cardiac death (SCD) in patients with hypertrophic cardiomyopathy (HCM). Methods and results LV-GLS was measured with vendor-independent software at a core laboratory in a cohort of 835 patients with HCM (aged 56.3 ± 12.2 years) followed-up for a median of 6.4 years. The primary endpoint was SCD events, including appropriate defibrillator therapy, within 5 years after the initial evaluation. The secondary endpoint was a composite of SCD events, heart failure admission, heart transplantation, and all-cause mortality. Twenty (2.4%) and 85 (10.2%) patients experienced the primary and secondary endpoints, respectively. Lower absolute LV-GLS quartiles, especially those worse than the median (−15.0%), were associated with progressively higher SCD event rates (P = 0.004). LV-GLS was associated with an increased risk for the primary endpoint, independent of the LV ejection fraction, apical aneurysm, and 2014 European Society of Cardiology (ESC) risk score [adjusted hazard ratio (aHR) 1.14, 95% confidence interval (CI) 1.02–1.28] or 2011 American College of Cardiology/American Heart Association (ACC/AHA) risk factors (aHR 1.18, 95% CI 1.05–1.32). LV-GLS was also associated with a higher risk for the composite secondary endpoint (aHR 1.06, 95% CI 1.01–1.12). The addition of LV-GLS enhanced the performance of the ESC risk score (C-statistic 0.756 vs. 0.842, P = 0.007) and the 2011 ACC/AHA risk factor strategy (C-statistic 0.743 vs. 0.814, P = 0.007) for predicting SCD. Conclusion LV-GLS is an important prognosticator in patients with HCM and provides additional information to established risk stratification strategies for predicting SCD.


EP Europace ◽  
2017 ◽  
Vol 19 (suppl_3) ◽  
pp. iii300-iii301
Author(s):  
M. Biffi ◽  
A. Vado ◽  
G. Nigro ◽  
ML. Narducci ◽  
E. Ammendola ◽  
...  

Author(s):  
Gabrielle Norrish ◽  
Cristian Topriceanu ◽  
Chen Qu ◽  
Ella Field ◽  
Helen Walsh ◽  
...  

Abstract Aims The 12-lead electrocardiogram (ECG) is routinely performed in children with hypertrophic cardiomyopathy (HCM). An ECG risk score has been suggested as a useful tool for risk stratification, but this has not been independently validated. This aim of this study was to describe the ECG phenotype of childhood HCM in a large, international, multi-centre cohort and investigate its role in risk prediction for arrhythmic events. Methods and results Data from 356 childhood HCM patients with a mean age of 10.1 years (±4.5) were collected from a retrospective, multi-centre international cohort. Three hundred and forty-seven (97.5%) patients had ECG abnormalities at baseline, most commonly repolarization abnormalities (n = 277, 77.8%); left ventricular hypertrophy (n = 240, 67.7%); abnormal QRS axis (n = 126, 35.4%); or QT prolongation (n = 131, 36.8%). Over a median follow-up of 3.9 years (interquartile range 2.0–7.7), 25 (7%) had an arrhythmic event, with an overall annual event rate of 1.38 (95% CI 0.93–2.04). No ECG variables were associated with 5-year arrhythmic event on univariable or multivariable analysis. The ECG risk score threshold of >5 had modest discriminatory ability [C-index 0.60 (95% CI 0.484–0.715)], with corresponding negative and positive predictive values of 96.7% and 6.7% Conclusion In a large, international, multi-centre cohort of childhood HCM, ECG abnormalities were common and varied. No ECG characteristic, either in isolation or combined in the previously described ECG risk score, was associated with 5-year sudden cardiac death risk. This suggests that the role of baseline ECG phenotype in improving risk stratification in childhood HCM is limited.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
P Martinez Vives ◽  
A Cecconi ◽  
A Vera ◽  
T Nogales-Romo ◽  
B Lopez-Melgar ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Hypertrophic cardiomyopathy (HCM) is a relatively prevalent condition associated with arrhythmic events and sudden cardiac death. Several tools are currently available to identify which HCM patients are at risk of developing these events. Purpose We aimed to evaluate the association of Tissue Tracking strain analysis by cardiac magnetic resonance (CMR) and the development of arrhythmic events in patients with HCM. Methods We prospectively analyzed 136 consecutive patients with HCM diagnosis (established according to current clinical practice guidelines) from January 2006 to October 2017. Every routine 24 hours ECG-monitoring test was registered and looked for sustained or non-sustained ventricular tachycardia (any VT). CMR studies were performed following our predefined CMR protocol for HCM with 1.5T magnets. Cine images were obtained with standard, retrospectively gated, steady-state free-precession (SSFP) sequences in 2, 3 and 4 chambers views and in 10–15 contiguous short-axis slices covering the ventricles from the base to the apex, with breath holding. The strain evaluation was performed by a commercially available Tissue Tracking analysis software, manually defining the endocardial border in short axis, 4, 3 and 2 chambers views and, after verifying adequate identification of the different structures, running the strain analysis (Figure 1, displaying myocardium identification by the strain analysis software). Results Mean follow-up was 49 ± 45 months. Mean age was 61 ± 15 years old (p for the comparation between the group with arrhythmic and the group without arrhythmic events 0.212) and 31% of patients were women (p 0.420). Mean ejection fraction was 69 ± 9.21% (p 0.223) and mean HCM-SCD (hypertrophic cardiomyopathy sudden cardiac death) risk score was 2.20 ± 1.34 (p <0.001). Median percentage of total myocardium showing late gadolinium enhancement (LGE) was 0.61 (interquartile range 2.9; p 0.170). Mean global radial strain (GRS) was 26.23 ± 8.78% (p <0.001). 21 VT episodes were recorded during follow-up. GRS showed an area under de ROC curve of 0.75 predicting VT during follow-up, selecting the value of 27% as the best sensitivity/specificity cutoff point. Statistically significant differences were not found when analyzing global circumferential strain (GCS) and global longitudinal strain (GLS) as VT predictors after adjusting for possible confusion factors (GRS, GCS and GLS distributions depicted in Figure 2). A binary GRS ≥27%/<27% variable was included in a logistic regression model adjusted by age, percent of total myocardium mass showing LGE and HCM-SCD risk score. Significantly more arrhythmic events were found to occur in patients with a GRS <27% (OR 7.33; 95% confidence interval 1.07 – 50.41; p 0.043) after adjusting by age, percent of total myocardium mass showing LGE, and HCM-SCD risk score Conclusions A GRS value of <27% on CMR appears to be a good predictor of worse arrhythmic prognosis in patients with HCM.


Sign in / Sign up

Export Citation Format

Share Document