Interannual Rainfall Extremes over Southwest Western Australia Linked to Indian Ocean Climate Variability

2006 ◽  
Vol 19 (10) ◽  
pp. 1948-1969 ◽  
Author(s):  
Matthew H. England ◽  
Caroline C. Ummenhofer ◽  
Agus Santoso

Abstract Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.

2017 ◽  
Vol 56 (7) ◽  
pp. 2035-2052 ◽  
Author(s):  
Thomas Garot ◽  
Hélène Brogniez ◽  
Renaud Fallourd ◽  
Nicolas Viltard

AbstractThe spatial and temporal distribution of upper-tropospheric humidity (UTH) observed by the Sounder for Atmospheric Profiling of Humidity in the Intertropics by Radiometry (SAPHIR)/Megha-Tropiques radiometer is analyzed over two subregions of the Indian Ocean during October–December over 2011–14. The properties of the distribution of UTH were studied with regard to the phase of the Madden–Julian oscillation (active or suppressed) and large-scale advection versus local production of moisture. To address these topics, first, a Lagrangian back-trajectory transport model was used to assess the role of the large-scale transport of air masses in the intraseasonal variability of UTH. Second, the temporal evolution of the distribution of UTH is analyzed using the computation of the higher moments of its probability distribution function (PDF) defined for each time step over the domain. The results highlight significant differences in the PDF of UTH depending on the phase of the MJO. The modeled trajectories ending in the considered domain originate from an area that strongly varies depending on the phases of the MJO: during the active phases, the air masses are spatially constrained within the tropical Indian Ocean domain, whereas a distinct upper-tropospheric (200–150 hPa) westerly flow guides the intraseasonal variability of UTH during the suppressed phases. Statistical relationships between the cloud fractions and the UTH PDF moments of are found to be very similar regardless of the convective activity. However, the occurrence of thin cirrus clouds is associated with a drying of the upper troposphere (enhanced during suppressed phases), whereas the occurrence of thick cirrus anvil clouds appears to be significantly related to a moistening of the upper troposphere.


Author(s):  
Lei Han

AbstractThe meridional overturning circulation (MOC) seasonality in the Indian Ocean is investigated with the ocean state estimate product, ECCO v4r3. The vertical movements of water parcels are predominantly due to the heaving of the isopycnals all over the basin except off the western coast. Aided by the linear propagation equation of long baroclinic Rossby waves, the driving factor determining the strength of the seasonal MOC in the Indian Ocean is identified as the zonally-integrated Ekman pumping anomaly, rather than the Ekman transport concluded in earlier studies. A new concept of sloshing MOC is proposed, and its difference with the classic Eulerian MOC leads to the so-called diapycnal MOC. The striking resemblance of the Eulerian and sloshing MOCs implies the seasonal variation of the Eulerian MOC in the Indian Ocean is a sloshing mode. The shallow overturning cells manifest themselves in the diapycnal MOC as the most remarkable structure. New perspectives on the upwelling branch of the shallow overturn in the Indian Ocean are offered based on diapycnal vertical velocity. The discrepancy among the observation-based estimates on the bottom inflow across 32°S of the basin is interpreted with the seasonal sloshing mode. Consequently, the “missing mixing” in the deep Indian Ocean is attributed to the overestimated diapycnal volume fluxes. Decomposition of meridional heat transport (MHT) into sloshing and diapycnal components clearly shows the dominant mechanism of MHT in the Indian Ocean in various seasons.


2015 ◽  
Vol 143 (3) ◽  
pp. 794-812 ◽  
Author(s):  
Xiouhua Fu ◽  
Wanqiu Wang ◽  
June-Yi Lee ◽  
Bin Wang ◽  
Kazuyoshi Kikuchi ◽  
...  

Abstract Previous observational analysis and modeling studies indicate that air–sea coupling plays an essential role in improving MJO simulations and extending MJO forecasting skills. However, whether the SST feedback plays an indispensable role for the existence of the MJO remains controversial, and the precise physical processes through which the SST feedback may lead to better MJO simulations and forecasts remain elusive. The DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY) field campaign recently completed over the Indian Ocean reveals a new perspective and provides better data to improve understanding of the MJO. It is found that among the five MJO events that occurred during the DYNAMO/CINDY field campaign, only two MJO events (the November and March ones) have robust SST anomalies associated with them. For the other three MJO events (the October, December, and January ones), no coherent SST anomalies are observed. This observational scenario suggests that the roles of air–sea coupling on the MJO vary greatly from event to event. To elucidate the varying roles of air–sea coupling on different MJO events, a suite of hindcast experiments was conducted with a particular focus on the October and November MJO events. The numerical results confirm that the October MJO is largely controlled by atmospheric internal dynamics, while the November MJO is strongly coupled with underlying ocean. For the November MJO event, the positive SST anomalies significantly improve MJO forecasting by enhancing the response of a Kelvin–Rossby wave couplet, which prolongs the feedback between convection and large-scale circulations, and thus favors the development of stratiform rainfall, in turn, facilitating the production of eddy available potential energy and significantly amplifying the intensity of the model November MJO.


2020 ◽  
Author(s):  
Takeshi Izumo ◽  
Maratt Satheesan Swathi ◽  
Matthieu Lengaigne ◽  
Jérôme Vialard ◽  
Dr Ramesh Kumar

<p>A strong Low-Level Jet (LLJ), also known as the Findlater jet, develops over the Arabian Sea during the Indian summer monsoon. This jet is an essential source of moisture for monsoonal rainfall over the densely-populated Indian subcontinent and is a key contributor to the Indian Ocean oceanic productivity by sustaining the western Arabian Sea upwelling systems. The LLJ intensity fluctuates intraseasonally within the ~20- to 90-day band, in relation with the northward-propagating active and break phases of the Indian summer monsoon. Our observational analyses reveal that these large-scale regional convective perturbations  only explain about half of the intraseasonal LLJ variance, the other half being unrelated to large-scale convective perturbations over the Indian Ocean. We show that convective fluctuations in two regions outside the Indian Ocean can remotely force a LLJ intensification, four days later. Enhanced atmosphericdeep convection over the northwestern tropical Pacific yields westerly wind anomalies that propagate westward to the Arabian Sea as baroclinic atmospheric Rossby Waves. Suppressed convection over the eastern Pacific / North American monsoon region yields westerly wind anomalies that propagate eastward to the Indian Ocean as dry baroclinic equatorial Kelvin waves. Those largely independent remote influences jointly explain ~40% of the intraseasonal LLJ variance that is not related to convective perturbations over the Indian Ocean (i.e. ~20% of the total), with the northwestern Pacific contributing twice as much as the eastern Pacific. Taking into account these two remote influences should thus enhance the ability to predict the LLJ.</p><p> </p><p>Related reference: Swathi M.S, Takeshi Izumo, Matthieu Lengaigne, Jérôme Vialard and M.R. Ramesh Kumar:Remote influences on the Indian monsoon Low-Level Jet intraseasonal variations, accepted in Climate Dynamics.</p>


2010 ◽  
Vol 23 (6) ◽  
pp. 1334-1353 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Yun Li

Abstract Using the NCEP–NCAR reanalysis, the 40-yr ECMWF Re-Analysis (ERA-40), and precipitation data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Australian Bureau of Meteorology, the variability and circulation features influencing southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is called the southwest Australian circulation (SWAC) because of its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land–sea thermal contrast. The seasonal march of the SWAC in extended winter (May–October) is demonstrated by pentad data. An index based on the dynamics’ normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May–July) and late (August–October) winter. In weaker winter SWAC years, there is an anticyclonic anomaly over the southern Indian Ocean resulting in weaker westerlies and northerlies, which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter but also the long-term drying trend over SWWA in early winter. The well-coupled SWAC–SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the southern annular mode (SAM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA. The external forcing of the SWAC is also explored in this study.


2009 ◽  
Vol 137 (10) ◽  
pp. 3254-3268 ◽  
Author(s):  
Ping Liu ◽  
Masaki Satoh ◽  
Bin Wang ◽  
Hironori Fudeyasu ◽  
Tomoe Nasuno ◽  
...  

Abstract This study discloses detailed Madden–Julian oscillation (MJO) characteristics in the two 30-day integrations of the global cloud-system-resolving Nonhydrostatic Icosahedral Atmospheric Model (NICAM) using the all-season real-time multivariate MJO index of Wheeler and Hendon. The model anomaly is derived by excluding the observed climatology because the simulation is sufficiently realistic. Results show that the MJO has a realistic evolution in amplitude pattern, geographical locations, eastward propagation, and baroclinic- and westward-tilted structures. In the central Indian Ocean, convection develops with the low-level easterly wind anomaly then matures where the low-level easterly and westerly anomalies meet. Anomalous moisture tilts slightly with height. In contrast, over the western Pacific, the convection grows with a low-level westerly anomaly. Moisture fluctuations, leading convection in eastward propagation, tilt clearly westward with height. The frictional moisture convergence mechanism operates to maintain the MJO. Such success can be attributed to the explicit representation of the interactions between convection and large-scale circulations. The simulated event, however, grows faster in phases 2 and 3, and peaks with 30% higher amplitude than that observed, although the 7-km version shows slight improvement. The fast-growth phases are induced by the fast-growing low-level convergence in the Indian Ocean and the strongly biased ITCZ in the west Pacific when the model undergoes a spinup. The simulated OLR has a substantial bias in the tropics. Possible solutions to the deficiencies are discussed.


2021 ◽  
Author(s):  
Helen E. Phillips ◽  
Amit Tandon ◽  
Ryo Furue ◽  
Raleigh Hood ◽  
Caroline Ummenhofer ◽  
...  

Abstract. Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and its water properties, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered, which control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean-atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air-sea interactions and climate variability. The second International Indian Ocean Expedition (IIOE-2) and related efforts have motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and between the surface and the deep ocean. In the last decade we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean, and climate variability on interannual to decadal timescales.This synthesis paper reviews the advances in these areas in the last decade.


2019 ◽  
Vol 32 (22) ◽  
pp. 7989-8001 ◽  
Author(s):  
David MacLeod ◽  
Cyril Caminade

Abstract El Niño–Southern Oscillation (ENSO) has large socioeconomic impacts worldwide. The positive phase of ENSO, El Niño, has been linked to intense rainfall over East Africa during the short rains season (October–December). However, we show here that during the extremely strong 2015 El Niño the precipitation anomaly over most of East Africa during the short rains season was less intense than experienced during previous El Niños, linked to less intense easterlies over the Indian Ocean. This moderate impact was not indicated by reforecasts from the ECMWF operational seasonal forecasting system, SEAS5, which instead forecast large probabilities of an extreme wet signal, with stronger easterly anomalies over the surface of the Indian Ocean and a colder eastern Indian Ocean/western Pacific than was observed. To confirm the relationship of the eastern Indian Ocean to East African rainfall in the forecast for 2015, atmospheric relaxation experiments are carried out that constrain the east Indian Ocean lower troposphere to reanalysis. By doing so the strong wet forecast signal is reduced. These results raise the possibility that link between ENSO and Indian Ocean dipole events is too strong in the ECMWF dynamical seasonal forecast system and that model predictions for the East African short rains rainfall during strong El Niño events may have a bias toward high probabilities of wet conditions.


Sign in / Sign up

Export Citation Format

Share Document