scholarly journals Mean body size predicts colony performance in the common eastern bumble bee (Bombus impatiens )

2018 ◽  
Vol 43 (4) ◽  
pp. 458-462 ◽  
Author(s):  
John D. Herrmann ◽  
Nick M. Haddad ◽  
Douglas J. Levey
2011 ◽  
Vol 197 (11) ◽  
pp. 1097-1104 ◽  
Author(s):  
Margaret J. Couvillon ◽  
Jennifer M. Jandt ◽  
Jennifer Bonds ◽  
Bryan R. Helm ◽  
Anna Dornhaus

2020 ◽  
Author(s):  
Jacob G. Holland ◽  
Shinnosuke Nakayama ◽  
Maurizio Porfiri ◽  
Oded Nov ◽  
Guy Bloch

ABSTRACTSpecialization and plasticity are important for many forms of collective behavior, but the interplay between these factors is little understood. In insect societies, workers are often predisposed to specialize in different tasks, sometimes with morphological or physiological adaptations, facilitating a division of labor. Workers may also plastically switch between tasks or vary their effort. The degree to which predisposed specialization limits plasticity is not clear and has not been systematically tested in ecologically relevant contexts. We addressed this question in 20 freely-foraging bumble bee (Bombus terrestris) colonies by continually manipulating colonies to contain either a typically diverse or reduced (“homogeneous”) worker body size distribution, over two trials. Pooling both trials, diverse colonies did better in several indices of colony performance. The importance of body size was further demonstrated by the finding that foragers were larger than nurses even in homogeneous colonies with a very narrow body size range. However, the overall effect of size diversity stemmed mostly from one trial. In the other trial, homogeneous and diverse colonies showed comparable performance. By comparing behavioral profiles based on several thousand observations, we found evidence that workers in homogeneous colonies in this trial rescued colony performance by plastically increasing behavioral specialization and/or individual effort, compared to same-sized individuals in diverse colonies. Our results are consistent with a benefit to colonies of predisposed (size-diverse) specialists under certain conditions, but also suggest that plasticity or effort, can compensate for reduced (size-related) specialization. Thus, we suggest that an intricate interplay between specialization and plasticity is functionally adaptive in bumble bee colonies.


2020 ◽  
Vol 36 (1) ◽  
pp. 1
Author(s):  
Alexander J. Chandler ◽  
Francis A. Drummond ◽  
Judith A. Collins ◽  
Jennifer Lund ◽  
Gabriel Alnajjar

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 236
Author(s):  
Jacob Holland ◽  
Shinnosuke Nakayama ◽  
Maurizio Porfiri ◽  
Oded Nov ◽  
Guy Bloch

Specialisation and plasticity are important for many forms of collective behaviour, but the interplay between these factors is little understood. In insect societies, workers are often developmentally primed to specialise in different tasks, sometimes with morphological or physiological adaptations, facilitating a division of labour. Workers may also plastically switch between tasks or vary their effort. The degree to which developmentally primed specialisation limits plasticity is not clear and has not been systematically tested in ecologically relevant contexts. We addressed this question in 20 free-foraging bumble bee (Bombus terrestris) colonies by continually manipulating colonies to contain either a typically diverse, or a reduced (“homogeneous”), worker body size distribution while keeping the same mean body size, over two trials. Pooling both trials, diverse colonies produced a larger comb mass, an index of colony performance. The link between body size and task was further corroborated by the finding that foragers were larger than nurses even in homogeneous colonies with a very narrow body size range. However, the overall effect of size diversity stemmed mostly from one trial. In the other trial, homogeneous and diverse colonies showed comparable performance. By comparing behavioural profiles based on several thousand observations of individuals, we found evidence that workers in homogeneous colonies in this trial rescued colony performance by plastically increasing behavioural specialisation and/or individual effort, compared to same-sized individuals in diverse colonies. Our results are consistent with a benefit to colonies of large and small specialists under certain conditions, but also suggest that plasticity or effort can compensate for reduced (size-related) specialisation. Thus, we suggest that an intricate interplay between specialisation and plasticity is functionally adaptive in bumble bee colonies.


2010 ◽  
pp. no-no ◽  
Author(s):  
MARGARET J. COUVILLON ◽  
JENNIFER M. JANDT ◽  
NHI DUONG ◽  
ANNA DORNHAUS

Paleobiology ◽  
1982 ◽  
Vol 8 (1) ◽  
pp. 16-30 ◽  
Author(s):  
Donald R. Prothero ◽  
Paul C. Sereno

Barstovian (medial Miocene) mammalian faunas from the Texas Gulf Coastal Plain contained four apparently sympatric species of rhinoceroses: the common forms Aphelops megalodus and Teleoceras medicornutus, a dwarf Teleoceras, and a dwarf Peraceras. Previous work has suggested positive allometry in tooth area with respect to body size in several groups of mammals, i.e., larger mammals have relatively more tooth area. However, dwarfing lineages were shown to have relatively more tooth area for their body size. Our data show no significant allometry in post-canine tooth area of either artiodactyls or ceratomorphs. Similarly, dwarf rhinoceroses and hippopotami show no more tooth area than would be predicted for their size. Limbs are proportionately longer and more robust in larger living ceratomorphs (rhinos and tapirs) than predicted by previous authors. Limb proportions of both dwarf rhinoceroses and dwarf hippopotami are even more robust than in their living relatives.The high rhinoceros diversity reflects the overall high diversity of Barstovian faunas from the Texas Gulf Coastal Plain. The first appearance of several High Plains mammals in these faunas indicates “ecotone”-like conditions as faunal composition changed. Study of living continental dwarfs shows that there is commonly an ecological separation between browsing forest dwarfs and their larger forebears, which are frequently savannah grazers. This suggests that the dwarf rhinoceroses might have been forest browsers which were sympatric with the larger grazing rhinos of the High Plains during the Barstovian invasion. The continental dwarf model also suggests that insular dwarfism may be explained by the browsing food resources that predominate on islands.


Ecology ◽  
2021 ◽  
Author(s):  
Jennifer I. Van Wyk ◽  
Eugene R. Amponsah ◽  
Wee Hao Ng ◽  
Lynn S. Adler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document