colony performance
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Constance Lin ◽  
Aaron M. Tarone ◽  
Micky D. Eubanks

AbstractAnts have not been considered important in the process of vertebrate carrion decomposition, but a recent literature review reported over 150 carrion-visiting ant species. Though many ant species have been observed to remove carrion tissue and consume carrion-exuded liquids, the significance of ant recruitment to vertebrate carrion is poorly understood. We conducted a combination of field and laboratory experiments to quantify red imported fire ant recruitment to rodent carrion and determine whether consuming rodent carrion is beneficial to ant colony performance. In the field, 100% of rat carcasses were rapidly colonized by fire ants at high abundances. In our laboratory experiment, the performance of mice-fed fire ant colonies was poor when compared to colonies that were fed mice and insects or insects only. Our results suggest that there is a discrepancy between high levels of fire ant recruitment to vertebrate carrion and the poor colony performance when fed carrion. We hypothesize that fire ants are attracted to vertebrate carrion not because it is a high-quality food, but rather because it hosts large numbers of other invertebrates that can serve as prey for fire ants, potentially showcasing an interesting case of tritrophic interaction in carrion ecology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258430
Author(s):  
Saboor Ahmad ◽  
Khalid Ali Khan ◽  
Shahmshad Ahmed Khan ◽  
Hamed A. Ghramh ◽  
Aziz Gul

A healthy honey bee stock is critical to the beekeeping industry and the sustainability of the ecosystem. The quality of the supplemental diet influences the development and strength of the colony, especially during the pollen dearth period in the surrounding environment. However, the extent to which pollen substitute protein feeding affects honey bee colony parameters is not fully known. We conducted this study to test the influence of various supplemental diets on foraging effort, pollen load, capped brood area, population density, and honey yield. The treatment groups were supplied with patties of pollen substitute diets, whereas sugar syrup was given to the control group. Our results indicated that honey bees consumed a significantly higher amount of Diet 1 (45 g soybean flour + 15 g Brewer’s yeast + 75 g powdered sugar + 7.5 g skimmed milk + 7.5 g date palm pollen + 200 mL sugar syrup supplement with Vitamin C) followed by others supplemented diets. Further, pollen load, worker-sealed brood area, population strength, and honey yield differed significantly when Diet 1 was consumed instead of other supplemental diets. The proportion of biological parameters was less in the control group as compared to other treatments. This study highlights the potential of supplemental diets to improve the bee’s health and colony development when the pollens availability and diversity are insufficient.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eliza M. Litsey ◽  
Siwon Chung ◽  
Julia D. Fine

As social insects, honey bees (Apis mellifera) rely on the coordinated performance of various behaviors to ensure that the needs of the colony are met. One of the most critical of these behaviors is the feeding and care of egg laying honey bee queens by non-fecund female worker attendants. These behaviors are crucial to honey bee reproduction and are known to be elicited by the queen’s pheromone blend. The degree to which workers respond to this blend can vary depending on their physiological status, but little is known regarding the impacts of developmental exposure to agrochemicals on this behavior. This work investigated how exposing workers during larval development to chronic sublethal doses of insect growth disruptors affected their development time, weight, longevity, and queen pheromone responsiveness as adult worker honey bees. Exposure to the juvenile hormone analog pyriproxyfen consistently shortened the duration of pupation, and pyriproxyfen and diflubenzuron inconsistently reduced the survivorship of adult bees. Finally, pyriproxyfen and methoxyfenozide treated bees were found to be less responsive to queen pheromone relative to other treatment groups. Here, we describe these results and discuss their possible physiological underpinnings as well as their potential impacts on honey bee reproduction and colony performance.


Apidologie ◽  
2021 ◽  
Author(s):  
Jordan T. Ryder ◽  
Andrew Cherrill ◽  
Helen M. Thompson ◽  
Keith F. A. Walters

AbstractThe performance of Bombus terrestris micro-colonies fed five diets differing in pollen species composition and level of nine essential amino acids (EAA; leucine, lysine, valine, arginine, isoleucine, phenylalanine, threonine, histidine, methionine) was assessed for 37 days by recording total biomass gain, nest building initiation, brood production (eggs, small and large larvae, pupae, drones), nectar, and pollen collection. Stronger colony performance was linked to higher amino acid levels but no consistent differences in biomass gain were recorded between mono- and poly-species diets. Poorest performance occurred in micro-colonies offered pure oilseed rape (OSR) pollen which contained the lowest EAA levels. Reduced micro-colony development (delayed nest initiation and lower brood production) was related to OSR proportion in the diet and lower EAA levels. Results are discussed in relation to selection of plant species in the design of habitats to promote bee populations.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Tristan Kistler ◽  
Benjamin Basso ◽  
Florence Phocas

Abstract Background Efficient breeding programs are difficult to implement in honeybees due to their biological specificities (polyandry and haplo-diploidy) and complexity of the traits of interest, with performances being measured at the colony scale and resulting from the joint effects of tens of thousands of workers (called direct effects) and of the queen (called maternal effects). We implemented a Monte Carlo simulation program of a breeding plan designed specifically for Apis mellifera’s populations to assess the impact of polyandry versus monoandry on colony performance, inbreeding level and genetic gain depending on the individual selection strategy considered, i.e. complete mass selection or within-family (maternal lines) selection. We simulated several scenarios with different parameter setups by varying initial genetic variances and correlations between direct and maternal effects, the selection strategy and the polyandry level. Selection was performed on colony phenotypes. Results All scenarios showed strong increases in direct breeding values of queens after 20 years of selection. Monoandry led to significantly higher direct than maternal genetic gains, especially when a negative correlation between direct and maternal effects was simulated. However, the relative increase in these genetic gains depended also on their initial genetic variability and on the selection strategy. When polyandry was simulated, the results were very similar with either 8 or 16 drones mated to each queen. Across scenarios, polyandrous mating resulted in equivalent or higher gains in performance than monoandrous mating, but with considerably lower inbreeding rates. Mass selection conferred a ~ 20% increase in performance compared to within-family selection, but was also accompanied by a strong increase in inbreeding levels (25 to 50% higher). Conclusions Our study is the first to compare the long-term effects of polyandrous versus monoandrous mating in honeybee breeding. The latter is an emergent strategy to improve specific traits, such as resistance to varroa, which can be difficult or expensive to phenotype. However, if used during several generations in a closed population, monoandrous mating increases the inbreeding level of queens much more than polyandrous mating, which is a strong limitation of this strategy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Marina N. Psalti ◽  
Dustin Gohlke ◽  
Romain Libbrecht

Abstract Background The reproductive division of labor of eusocial insects, whereby one or several queens monopolize reproduction, evolved in a context of high genetic relatedness. However, many extant eusocial species have developed strategies that decrease genetic relatedness in their colonies, suggesting some benefits of the increased diversity. Multiple studies support this hypothesis by showing positive correlations between genetic diversity and colony fitness, as well as finding effects of experimental manipulations of diversity on colony performance. However, alternative explanations could account for most of these reports, and the benefits of diversity on performance in eusocial insects still await validation. In this study, we experimentally increased worker diversity in small colonies of the ant Lasius niger while controlling for typical confounding factors. Results We found that experimental colonies composed of workers coming from three different source colonies produced more larvae and showed more variation in size compared to groups of workers coming from a single colony. Conclusions We propose that the benefits of increased diversity stemmed from an improved division of labor. Our study confirms that worker diversity enhances colony performance, thus providing a possible explanation for the evolution of multiply mated queens and multiple-queen colonies in many species of eusocial insects.


2021 ◽  
Author(s):  
Rya Seltzer ◽  
Paz Kahanov ◽  
Yosef Kamer ◽  
Amots Hetzroni ◽  
Malgorzata Bienkowska ◽  
...  

Honey bees (Apis mellifera) are exposed to a variety of risk factors, but the ectoparasitic mite Varroa destructor and its associated viruses are considered to be the most significant problem worldwide. It has been widely recognized that honey bee stocks resistant to the mites are an essential part of any sustainable long-term management of Varroa. The aim of this study was to evaluate the efficacy of hygienic behavior in a local population of honey bees in order to reduce Varroa infestation. A bi-directional selection for high and low rates of hygienic behavior was carried out in Israel using either queen artificially inseminated or naturally mated. Colonies were screened for performance: population size, honey production, control of Varroa infestation, and the level of hygienic behavior. Furthermore, we examined the costs and benefits of selection using measurements of colony performance. Either way, selected lines should be tested for trade-offs and benefits to ensure their productivity. The selection process revealed that the trait is heritable. Maternal phenotype has a significant effect on Varroa load, as colonies founded by hygienic daughter queens showed a significantly lower parasite load. No major trade-offs were found between the rate of hygienic behavior, honey yield, and population size. Measuring the direct benefits of hygienic behavior through colony performance suggests that breeding for this trait makes bees more resistant to Varroa destructor. These results are promising for our successful local bee breeding programs in a Mediterranean climate.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Hélène Dechatre ◽  
Lucie Michel ◽  
Samuel Soubeyrand ◽  
Alban Maisonnasse ◽  
Pierre Moreau ◽  
...  

The parasitic Varroa destructor is considered a major pathogenic threat to honey bees and to beekeeping. Without regular treatment against this mite, honey bee colonies can collapse within a 2–3-year period in temperate climates. Beyond this dramatic scenario, Varroa induces reductions in colony performance, which can have significant economic impacts for beekeepers. Unfortunately, until now, it has not been possible to predict the summer Varroa population size from its initial load in early spring. Here, we present models that use the Varroa load observed in the spring to predict the Varroa load one or three months later by using easily and quickly measurable data: phoretic Varroa load and capped brood cell numbers. Built on 1030 commercial colonies located in three regions in the south of France and sampled over a three-year period, these predictive models are tools designed to help professional beekeepers’ decision making regarding treatments against Varroa. Using these models, beekeepers will either be able to evaluate the risks and benefits of treating against Varroa or to anticipate the reduction in colony performance due to the mite during the beekeeping season.


2021 ◽  
Vol 190 ◽  
pp. 105322
Author(s):  
Nemanja M. Jovanovic ◽  
Uros Glavinic ◽  
Biljana Delic ◽  
Branislav Vejnovic ◽  
Nevenka Aleksic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document