IV. Accumulation of DA and effect of ATP-Mg2+in granules from a human carotid body tumour

1971 ◽  
Vol 81 (S362) ◽  
pp. 18-18
1998 ◽  
Vol 10 (1) ◽  
pp. 62-64 ◽  
Author(s):  
R.A. Cooper ◽  
N.J. Slevin ◽  
R.J. Johnson ◽  
G. Evans

2021 ◽  
Vol 22 (15) ◽  
pp. 8222
Author(s):  
Dmitry Otlyga ◽  
Ekaterina Tsvetkova ◽  
Olga Junemann ◽  
Sergey Saveliev

The evolutionary and ontogenetic development of the carotid body is still understudied. Research aimed at studying the comparative morphology of the organ at different periods in the individual development of various animal species should play a crucial role in understanding the physiology of the carotid body. However, despite more than two centuries of study, the human carotid body remains poorly understood. There are many knowledge gaps in particular related to the antenatal development of this structure. The aim of our work is to study the morphological and immunohistochemical characteristics of the human carotid body in the antenatal and postnatal periods of development. We investigated the human carotid bodies from 1 embryo, 20 fetuses and 13 adults of different ages using samples obtained at autopsy. Immunohistochemistry revealed expression of βIII-tubulin and tyrosine hydroxylase in the type I cells and nerve fibers at all periods of ontogenesis; synaptophysin and PGP9.5 in the type I cells in some of the antenatal cases and all of the postnatal cases; 200 kDa neurofilaments in nerve fibers in some of the antenatal cases and all of the postnatal cases; and GFAP and S100 in the type II cells and Schwann cells in some of the antenatal cases and all of the postnatal cases. A high level of tyrosine hydroxylase in the type I cells was a distinctive feature of the antenatal carotid bodies. On the contrary, in the type I cells of adults, the expression of tyrosine hydroxylase was significantly lower. Our data suggest that the human carotid body may perform an endocrine function in the antenatal period, while in the postnatal period of development, it loses this function and becomes a chemosensory organ.


Author(s):  
Andrea Mazzatenta ◽  
Guya D. Marconi ◽  
Veronica Macchi ◽  
Andrea Porzionato ◽  
Amelia Cataldi ◽  
...  

BMJ ◽  
1957 ◽  
Vol 1 (5025) ◽  
pp. 982-978 ◽  
Author(s):  
M. Ellis ◽  
P. Winston

Sign in / Sign up

Export Citation Format

Share Document