human carotid
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 72)

H-INDEX

58
(FIVE YEARS 4)

Stroke ◽  
2021 ◽  
Author(s):  
David Izquierdo-Garcia ◽  
Himashinie Diyabalanage ◽  
Ian A. Ramsay ◽  
Nicholas J. Rotile ◽  
Adam Mauskapf ◽  
...  

Background and Purpose: High-risk atherosclerosis is an underlying cause of cardiovascular events, yet identifying the specific patient population at immediate risk is still challenging. Here, we used a rabbit model of atherosclerotic plaque rupture and human carotid endarterectomy specimens to describe the potential of molecular fibrin imaging as a tool to identify thrombotic plaques. Methods: Atherosclerotic plaques in rabbits were induced using a high-cholesterol diet and aortic balloon injury (N=13). Pharmacological triggering was used in a group of rabbits (n=9) to induce plaque disruption. Animals were grouped into thrombotic and nonthrombotic plaque groups based on gross pathology (gold standard). All animals were injected with a novel fibrin-specific probe 68 Ga-CM246 followed by positron emission tomography (PET)/magnetic resonance imaging 90 minutes later. 68 Ga-CM246 was quantified on the PET images using tissue-to-background (back muscle) ratios and standardized uptake value. Results: Both tissue-to-background (back muscle) ratios and standardized uptake value were significantly higher in the thrombotic versus nonthrombotic group ( P <0.05). Ex vivo PET and autoradiography of the abdominal aorta correlated positively with in vivo PET measurements. Plaque disruption identified by 68 Ga-CM246 PET agreed with gross pathology assessment (85%). In ex vivo surgical specimens obtained from patients undergoing elective carotid endarterectomy (N=12), 68 Ga-CM246 showed significantly higher binding to carotid plaques compared to a D-cysteine nonbinding control probe. Conclusions: We demonstrated that molecular fibrin PET imaging using 68 Ga-CM246 could be a useful tool to diagnose experimental and clinical atherothrombosis. Based on our initial results using human carotid plaque specimens, in vivo molecular imaging studies are warranted to test 68 Ga-CM246 PET as a tool to stratify risk in atherosclerotic patients.


Author(s):  
Wei Huan ◽  
Liu Yandong ◽  
Wang Chao ◽  
Zou Sili ◽  
Bai Jun ◽  
...  

Objective: programmed cell removal in atherosclerotic plaques plays a crucial role in retarding lesion progression. Macrophage apoptosis has a critical role in PrCR, especially in early-stage lesions. YKL-40 has been shown to be elevated as lesions develop and is closely related to macrophages. This study aimed to determine the effect of YKL-40 on regulating macrophage apoptosis and early-stage atherosclerosis progression.Research design and Methods: The correlations among the expression level of YKL-40, the area of early-stage plaque, and the macrophage apoptosis rate in plaques have been shown in human carotid atherosclerotic plaques through pathological and molecular biological detection. These results were successively confirmed in vivo (Ldlr−/- mice treated by YKL-40 recombinant protein/neutralizing antibody) and in vitro (macrophages that Ykl40 up-/down-expressed) experiments. The downstream targets were predicted by iTRAQ analysis.Results: In early-stage human carotid plaques and murine plaques, the YKL-40 expression level had a significant positive correlation with the area of the lesion and a significant negative correlation with the macrophage apoptosis rate. In vivo, the plaque area of aortic roots was significantly larger in the recomb-YKL-40 group than that in IgG group (p = 0.0247) and was significantly smaller in the anti-YKL-40 group than in the IgG group (p = 0.0067); the macrophage apoptosis rate of the plaque in aortic roots was significantly lower in the recomb-YKL-40 group than that in IgG group (p = 0.0018) and was higher in anti-YKL-40 group than that in VC group. In vitro, the activation level of caspase-9 was significantly lower in RAW264.7 with Ykl40 overexpressed than that in controls (p = 0.0054), while the expression level of Aven was significantly higher than that in controls (p = 0.0031). The apoptosis rate of RAW264.7 treated by recomb-YKL40 was significantly higher in the Aven down-regulated group than that in the control group (p &lt; 0.001). The apoptosis inhibitor Aven was confirmed as the target molecule of YKL-40. Mechanistically, YKL-40 could inhibit macrophage apoptosis by upregulating Aven to suppress the activation of caspase-9.Conclusion: YKL-40 inhibits macrophage apoptosis by upregulating the apoptosis inhibitor Aven to suppress the activation of caspase-9, which may impede normal PrCR and promote substantial accumulation in early-stage plaques, thereby leading to the progression of atherosclerosis.


Author(s):  
Lili Gao ◽  
Weiping Yu ◽  
Peng Song ◽  
Qing Li

Background: (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors. Objective: This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development. Methods: PubMed was screened for this information. Results: SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Conclusion: SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenjia Peng ◽  
Shuai Li ◽  
Shiyue Chen ◽  
Jiacheng Yang ◽  
Ze Sun

Background: Circular RNAs (circRNAs) are involved in atherosclerosis (AS) development. However, the function and mechanism of circRNA hsa_circ_0003204 (circ_0003204) in carotid artery AS remain unclear.Methods: Oxidized low-density lipoprotein (ox-LDL)-treated human carotid artery endothelial cells (HCtAECs) and THP-1 cells were used as cell models of carotid artery AS. Relative levels of circ_0003204, microRNA-188-3p (miR-188-3p), and transient receptor potential canonical channel 6 (TRPC6) were detected by quantitative reverse transcription–polymerase chain reaction or Western blotting. The targeting relationship between circ_0003204 or TRPC6 and miR-188-3p was assessed via dual-luciferase reporter analysis and RNA immunoprecipitation. Cell proliferation was assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and 5-ethynyl-2′-deoxyuridine (EdU) assay. Cell apoptosis was analyzed via assessing cell caspase-3 activity, apoptosis, and apoptosis-related protein. Inflammatory response was analyzed via analysis of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Oxidative stress was assessed via determination of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD).Results: Circ_0003204 and TRPC6 levels were elevated, and miR-188-3p expression declined in ox-LDL-treated HCtAECs and THP-1 cells. Circ_0003204 could regulate TRPC6 expression via mediating miR-188-3p. Circ_0003204 silencing weakened ox-LDL-induced viability inhibition and apoptosis in HCtAECs, and inflammatory response and oxidative stress in THP-1 cells via regulating miR-188-3p. MiR-188-3p overexpression attenuated ox-LDL-induced injury in HCtAECs and THP-1 cells by targeting TRPC6.Conclusion: Circ_0003204 knockdown mitigated ox-LDL-induced injury in HCtAECs and THP-1 cells via regulating the miR-188-3p/TRPC6 axis, indicating that circ_0003204 might play an important role in carotid artery AS.


Sign in / Sign up

Export Citation Format

Share Document