scholarly journals SH Waves in a Transversely Isotropic Medium-I

2010 ◽  
Vol 14 (1-4) ◽  
pp. 463-470 ◽  
Author(s):  
R. Sato ◽  
E. R. Lapwood
Geophysics ◽  
1988 ◽  
Vol 53 (12) ◽  
pp. 1616-1618 ◽  
Author(s):  
Joe Dellinger ◽  
Francis Muir

In an isotropic medium, waves reflected from a mirror form a virtual image of their source. This property of planar reflectors is generally not true in the presence of anisotropy. In their short note, Blair and Korringa (1987) show that for the special case of SH waves from a point source in a transversely isotropic medium, an aberration‐free image is formed for any orientation of the mirror. While their proof is mathematical, we show the same result in an intuitive, pictorial fashion and in the process discover that although the image is indeed aberration free, it is still distorted.


1984 ◽  
Vol 51 (4) ◽  
pp. 811-815 ◽  
Author(s):  
Y. M. Tsai

The stress distribution produced by the identation of a penny-shaped crack by an oblate smooth spheroidal rigid inclusion in a transversely isotropic medium is investigated using the method of Hankel transforms. This three-part mixed boundary value problem is solved using the techniques of triple integral equations. The normal contact stress between the crack surface and the indenter is written as the product of the associated half-space contact stress and a nondimensional crack-effect correction function. An exact expression for the stress-intensity is obtained as the product of a dimensional quantity and a nondimensional function. The curves for these nondimensional functions are presented and used to determine the values of the normalized stress-intensity factor and the normalized maximum contact stress. The stress-intensity factor is shown to be dependent on the material constants and increasing with increasing indentation. The stress-intensity factor also increases if the radius of curvature of the indenter surface increases.


Sign in / Sign up

Export Citation Format

Share Document