penny shaped crack
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 25)

H-INDEX

35
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Janine Kavanagh ◽  
Thomas Jones ◽  
David Dennis

Scaled analogue experiments were conducted to explore the effect of magma flow regimes, characterised by the Reynolds number (Re), on the transit of magma through the lithosphere via fractures. An elastic, transparent gelatine solid (the crust analogue) was injected by a fluid (magma analogue) to create a thin, vertical, and penny-shaped crack that is analogous to a magma-filled crack (dyke). A vertical laser sheet fluoresced passive-tracer particles suspended in the injected fluid, and particle image velocity (PIV) was used to map the location, magnitude, and direction of flow within the growing dyke from its inception to its surface rupture. Experiments were conducted using water, hydroxyethyl cellulose (HEC) or xanthan gum (XG) as the magma analogue. The results suggest that Re has significant impact on the direction of fluid flow within propagating dykes: Re > 0.1 (jet-flow) is characterised by a rapid central rising fluid jet and downflow at the dyke margin, whereas Re < 0.1 (creeping flow) is characterised by broadly uniform velocities across the dyke plane. Re may be underestimated by up to two orders of magnitude if tip velocity rather than internal fluid velocity is used. In nature, these different flow regimes would affect the petrological, geochemical, geophysical, and geodetic measurements of magma movement, key information upon which reconstructions of volcanic plumbing system architectures and their growth are based.


Author(s):  
Ying Yang ◽  
Zhen-Liang Hu ◽  
Alireza Gharahi ◽  
Peter Schiavone ◽  
Xian-Fang Li

2021 ◽  
pp. 108128652110214
Author(s):  
Ivan Argatov

The problem of a mode I crack having multiple contacts between the crack faces is considered. In the case of small contact islands of arbitrary shapes, which are arbitrarily located inside the crack, the first-order asymptotic model for the crack opening displacement is constructed using the method of matched asymptotic expansions. The case of a penny-shaped crack has been studied in detail. A scaling hypothesis for the compliance reduction factor is formulated.


2021 ◽  
Author(s):  
Jun Xie ◽  
Jizhou Tang ◽  
Sijie Sun ◽  
Yuwei Li ◽  
Yi Song ◽  
...  

Abstract Slurry, as a proppant-laden fluid for hydraulic fracturing, is pumped into initial perforated cracks to generate a conductive pathway for hydrocarbon movement. Recently, numerous studies have been done to investigate mechanisms of proppant transport within vertical fractures. However, the distribution of proppant during stimulation becomes much more complicated if bedding planes (BPs), natural fractures (NFs) or other discontinuities pervasively distributed throughout the formation. Thus, how to capture the transport and placement mechanisms of proppant particles in the opened BPs becomes a significant issue. In this paper, we propose a closed-form continuous proppant transport model based on the conservation of total proppant volume and sedimentation of proppant particles. This model enables to integrate with the fluid flow section of a 3-D hydro-mechanical coupled fracture propagation model and then predict the distribution of proppant velocity and slurry volume fraction within a dynamic fracture network. Stokes’ law is applied to determine the sedimentation velocity. In the fracture propagation model, rock deformation is governed by the analytical solution of penny-shaped crack to determine fracture width. Fluid flow is characterized by finite differentiation scheme and then the fluid velocity is obtained. These two parameters above are inputs for the proppant transport model and both slurry viscosity and density are updated in this step. Afterwards, both fracture width and fluid velocity would be altered in the fracture model. Analysis of the proppant distribution within crossing-shaped fracture is conducted to study mechanisms of proppant transport along opened BPs. From our numerical analysis, we find that the distribution of proppant concentration is independent with the fluid viscosity, but highly dependent on the volume fraction of pumping slurry, under a given pumping pressure. Due to the difference of viscosity and proppant volume fraction at locations of upper and lower BPs, we observe that two symmetric BPs are unevenly opened, with different channel length along BP. Moreover, the width of opened upper BP is much smaller than that of opened lower BP as a result of discrepancy of proppant sedimentation. Last but not the least, a criterion of flow bed mobilization is established for dynamically tracking the sedimentation along the BP. Then the effect of different parameters (such as proppant size, proppant density, fluid viscosity, injection rate) on proppant distribution along opened BPs is also studied. Our model fully considers the proppant transport and settlement, proppant bed formation and interaction between fracture and proppant, which helps to predict the influence of proppant during fracturing treatment. Additionally, our model is also capable of dynamically tracking the settlement of proppant along opened BPs.


Author(s):  
Anna Y. Zemlyanova

A problem for a nanosized penny-shaped fracture in an infinite homogeneous isotropic elastic medium is considered. The fracture is opened by applying an axisymmetric normal traction to its surface. The surface energy in the Steigmann–Ogden form is acting on the boundary of the fracture. The problem is solved by using the Boussinesq potentials represented by the Hankel transforms of certain unknown functions. With the help of these functions, the problem can be reduced to a system of two singular integro-differential equations. The numerical solution to this system can be obtained by expanding the unknown functions into the Fourier–Bessel series. Then the approximations of the unknown functions can be obtained by solving a system of linear algebraic equations. Accuracy of the numerical procedure is studied. Various numerical examples for different values of the surface energy parameters are considered. Parametric studies of the dependence of the solutions on the mechanical and the geometric parameters of the system are undertaken. It is shown that the surface parameters have a significant influence on the behaviour of the material system. In particular, the presence of surface energy leads to the size-dependency of the solutions and smoother behaviour of the solutions near the tip of the crack.


Sign in / Sign up

Export Citation Format

Share Document