shaped crack
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 42)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 63 (12) ◽  
pp. 704-711
Author(s):  
Nvjie Ma ◽  
Xiangdong Gao ◽  
Congyi Wang ◽  
Yanxi Zhang

To overcome the shortcomings of existing magneto-optical imaging, such as the saturation of an image under a constant magnetic field and the ambiguity of an image under an alternating magnetic field, imaging using a combined magnetic field is presented in this research. Weld defect samples include a laser-cut groove, a wire-cut penetrating groove, a pit and a Z-shaped crack. Magneto-optical imaging experiments were carried out under different magnetic fields. Contour extraction and standard deviation calculations were carried out for all magneto-optical images and the maximum standard deviation of the laser-cut groove under an alternating magnetic field was 20.9, which was less than the maximum value of 37.4 under a combined magnetic field. The experimental results show that the contrast of a magneto-optical image obtained under the combined magnetic field is greater than that obtained under the alternating magnetic field for all defects. The proposed combined magnetic field could optimise the magneto-optical imaging effect for weld defects under the existing excitation method to a certain extent.


Author(s):  
Albin Wessling ◽  
Simon Larsson ◽  
Pär Jonsén ◽  
Jörgen Kajberg

AbstractBy utilizing numerical models and simulation, insights about the fracture process of brittle heterogeneous materials can be gained without the need for expensive, difficult, or even impossible, experiments. Brittle and heterogeneous materials like rocks usually exhibit a large spread of experimental data and there is a need for a stochastic model that can mimic this behaviour. In this work, a new numerical approach, based on the Bonded Discrete Element Method, for modelling of heterogeneous brittle materials is proposed and evaluated. The material properties are introduced into the model via two main inputs. Firstly, the grains are constructed as ellipsoidal subsets of spherical discrete elements. The sizes and shapes of these ellipsoidal subsets are randomized, which introduces a grain shape heterogeneity Secondly, the micromechanical parameters of the constituent particles of the grains are given by the Weibull distribution. The model was applied to the Brazilian Disc Test, where the crack initiation, propagation, coalescence and branching could be investigated for different sets of grain cement strengths and sample heterogeneities. The crack initiation and propagation was found to be highly dependent on the level of heterogeneity and cement strength. Specifically, the amount of cracks initiating from the loading contact was found to be more prevalent for cases with higher cement strength and lower heterogeneity, while a more severe zigzag shaped crack pattern was found for the cases with lower cement strength and higher heterogeneity. Generally, the proposed model was found to be able to capture typical phenomena associated with brittle heterogeneous materials, e.g. the unpredictability of the strength in tension and crack properties.


Author(s):  
Ying Yang ◽  
Zhen-Liang Hu ◽  
Alireza Gharahi ◽  
Peter Schiavone ◽  
Xian-Fang Li

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3949
Author(s):  
Jianming Zhang ◽  
Rui Xu ◽  
Yong He ◽  
Wensheng Yang

This paper presents direct computations of 3-D fracture parameters including stress intensity factors (SIFs) and T-stress for straight and curved planar cracks with the p-version finite element method (P-FEM) and contour integral method (CIM). No excessive singular element or enrichment function is required for the computation. To demonstrate the accuracy and efficiency of the proposed approaches, several benchmark numerical models of 3-D planar straight and curved cracks with single and mixed-mode fractures are considered and analyzed: a through thickness edge straight crack in a homogeneous material, a through thickness inclined straight crack, a penny-shaped crack embedded in a cube and a central ellipse shaped crack in a homogeneous cube. Numerical results are analyzed and compared with analytical solutions and those reported by the extended finite element method (XFEM) and the scaled boundary finite element method (SBFEM) in the available literature. Numerical experiments show the accuracy, robustness and effectiveness of the present method.


2021 ◽  
Author(s):  
Masaki Shimodaira ◽  
Tohru Tobita ◽  
Yasuto Nagoshi ◽  
Kai Lu ◽  
Jinya Katsuyama

Abstract In the structural integrity assessment of a reactor pressure vessel (RPV), the fracture toughness (KJc) should be higher than the stress intensity factor at the crack tip of a semi-elliptical shaped under-clad crack (UCC), which is prescribed in JEAC4206-2016. However, differences in crack depth and existence of cladding between the postulated crack and fracture toughness test specimens would be affected to the plastic constraint state and KJc evaluation. In this study, we performed fracture toughness tests and finite element analyses to investigate the effect of plastic constraint and cladding on the semi-elliptical shaped crack in KJc evaluation. The apparent KJc value evaluated at the deepest point of the crack exceeded 5% fracture probability based on the Master Curve method estimated from C(T) specimens, and the conservativeness of the current integrity assessment method was confirmed. Few initiation sites were observed along the tip of semi-elliptical shaped crack other than the deepest point. The plastic constraint state was also analyzed along the crack tip, and it was found that the plastic constraint at the crack tip near the surface was lower than that for the deepest point. Moreover, it was quantitatively showed that the UCC decreased the plastic constraint. The local approach suggested higher KJc value for the UCC than that for the surface crack, reflecting the low constraint effect for the UCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Selim Kim ◽  
Min Cheol Jo ◽  
Seongwoo Kim ◽  
Jinkeun Oh ◽  
Sang-Heon Kim ◽  
...  

AbstractThe bending angle at the peak load is regarded as the most important parameter for evaluating bending properties of hot-press-forming (HPF) steels. However, it is not a mechanics-based parameter for the bending criterion, and the data interpretation is difficult because bending criteria in relation with microstructures and associated bending mechanisms have not been verified yet. In this study, effects of coating and baking treatments on bending angles at the peak load of three kinds of 1470 MPa-grade HPF steels were investigated by interrupted three-point bending tests coupled with direct microstructural observation. According to direct observations of sequential cracking processes of V-shaped crack (V-crack), bending procedures were classified into four stages: (1) formation of small V-crack, (2) increase in number and size of V-cracks, (3) initiation of shear-crack propagation from the V-crack tip, and (4) further propagation and opening of the shear crack. The minimum bending angle required for initiating the shear-crack propagation from the V-crack tip was defined as a critical angle, which meant the boundary between the 2nd and 3rd stages. The present bending behavior related with critical bending angle and V-cracking could be interpreted similarly by the fracture-mechanics concept, i.e., the initiation of shear-crack propagation.


Sign in / Sign up

Export Citation Format

Share Document