scholarly journals Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

2008 ◽  
Vol 14 (4) ◽  
pp. 949-949
Author(s):  
JAYNE BELNAP ◽  
SUSAN L. PHILLIPS ◽  
STEPHAN FLINT ◽  
JOHN MOENY ◽  
MARTYN CALDWELL
2015 ◽  
Vol 112 (39) ◽  
pp. 12116-12121 ◽  
Author(s):  
Scott Ferrenberg ◽  
Sasha C. Reed ◽  
Jayne Belnap

Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.


2015 ◽  
Vol 88 ◽  
pp. 303-313 ◽  
Author(s):  
Jin Wang ◽  
Jingting Bao ◽  
Jieqiong Su ◽  
Xinrong Li ◽  
Guoxiong Chen ◽  
...  

Author(s):  
Yang Yang ◽  
Yuanming Xiao ◽  
Li Changbin ◽  
Bo Wang ◽  
Gao yongheng ◽  
...  

Anthropogenic-driven global change, including changes in atmospheric nitrogen (N) deposition and precipitation patterns, is dramatically altering N cycling in soil. How long-term N deposition, precipitation changes, and their interaction influence nitrous oxide (N2O) emissions remains unknown, especially in the alpine steppes of the Qinghai-Tibetan Plateau (QTP). To fill this knowledge gap, a platform of N addition and altered precipitation experiments was established in an alpine steppe of the QTP in 2013. N addition significantly increased N2O emissions, and alterations in soil NO3-N, pH, temperature, and belowground biomass modulated N2O emissions. In addition to abiotic parameters, ammonia-oxidizing bacteria dominated N2O emissions in nitrification compared with ammonia-oxidizing archaea. Changes in the denitrifying microbial community, namely a high ratio of (nirS+nirK) gene-containing to nosZ gene-containing organisms, were responsible for N2O emissions in denitrification. Altered precipitation did not affect N2O emissions. This unexpected finding, which is inconsistent with the conventional view that N2O emissions are controlled by soil water content, indicates that N2O emissions are particularly susceptible to N deposition in the alpine steppes. Notably, whereas N2O emissions were affected by N addition as a single factor, they were not significantly affected by the combination of precipitation changes and N addition, indicating that altered precipitation patterns may mitigate the positive feedback effect of N addition on N2O emissions. Consequently, our study suggests that the response of N2O emissions to N deposition in future global change scenarios will be affected by precipitation regimes in the alpine steppes.


2013 ◽  
Vol 5 (6) ◽  
pp. 739
Author(s):  
Wu YongSheng ◽  
Erdun Hasi ◽  
Yin RuiPing ◽  
Zhang Xin ◽  
Ren Jie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document