precipitation regimes
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 131)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Anshuka Anshuka ◽  
Alexander JV Buzacott ◽  
Floris van Ogtrop

Abstract Monitoring hydrological extremes is essential for developing risk-mitigation strategies. One of the limiting factors for this is the absence of reliable on the ground monitoring networks that capture data on climate variables, which is highly evident in developing states such as Fiji. Fortunately, increasing global coverage of satellite-derived datasets is facilitating utilisation of this information for monitoring dry and wet periods in data sparse regions. In this study, three global satellite rainfall datasets (CHIRPS, PERSIANN-CDR and CPC) were evaluated for Fiji. All satellite products had reasonable correlations with station data, and CPC had the highest correlation with minimum error values. The Effective Drought Index (EDI), a useful index for understanding hydrological extremes, was then calculated. Thereafter, a canonical correlation analysis (CCA) was employed to forecast the EDI using sea surface temperature anomaly (SSTa) data. A high canonical correlation of 0.98 was achieved between the PCs of mean SST and mean EDI, showing the influence of ocean–atmospheric interactions on precipitation regimes in Fiji. CCA was used to perform a hind cast and a short-term forecast. The training stage produced a coefficient of determinant (R2) value of 0.83 and mean square error (MSE) of 0.11. The results in the testing stage for the forecast were more modest, with an R2 of 0.45 and MSE of 0.26. This easy-to-implement system can be a useful tool used by disaster management bodies to aid in enacting water restrictions, providing aid, and making informed agronomic decisions such as planting dates or extents.


AbstractPrecipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard Profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.


2021 ◽  
Vol 14 (4) ◽  
pp. 55-66 ◽  
Author(s):  
Valery I. Grebenets ◽  
Vasily A. Tolmanov ◽  
Dmitry A. Streletskiy

This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods.


2021 ◽  
Vol 9 ◽  
Author(s):  
Matthias Strahlhofer ◽  
Martin H. Gerzabek ◽  
Nicola Rampazzo ◽  
Paulina M. Couenberg ◽  
Evelyn Vera ◽  
...  

While the extended absence of human influence has led to matchless natural conditions on the Galápagos archipelago, agricultural activities on the inhabited islands are increasingly affecting soil health and functioning. However, a systematic assessment of the agricultural soils on the Galápagos Islands is still absent. Plate tectonics and hotspot volcanism cause an eastward drift of the archipelago and result in a west-to-east soil age gradient from approx. 1 to 1,000 ka. In addition, precipitation regimes change from arid to humid with elevation on the higher-standing islands. The objective of this study was to investigate differences in soil fertility parameters and Mehlich (III)-extractable nutrient levels along these gradients in order to provide baseline information for sustainable agricultural management. Topsoil samples (0–20 cm) from 125 farms of the islands Isabela, Santa Cruz and San Cristóbal were analyzed. Gravel and sand content, pH, electrical conductivity, cation exchange capacity, base saturation, soil organic C and total N content tended to decrease with increasing island age, while clay content, soil macroaggregate stability, plant-available water and bulk density increased. Mehlich (III)-extractable base cations Ca, K, Mg and Na as well as P, Fe and Zn showed a decreasing tendency from the youngest to the oldest island, while Mn increased with island age. Mehlich (III)-extractable Cu and Na reached their highest levels on the most intensively farmed, intermediate-aged island Santa Cruz, likely related to anthropogenic inputs and irrigation with brackish water, respectively. Changes along the altitudinal climate gradient within the studied islands were most significant for soil pH, base saturation, and Mehlich (III)-extractable Ca and Mn. Our results highlight the importance of site-specific agricultural management to account for the strong heterogeneity in soil parameters among and within the Galápagos archipelago. The data provided herein shall serve as a baseline for targeted future management strategies to avoid soil degradation, restore and maintain soil functioning and, hence, sustain the soils’ provision of ecosystem services in this unique archipelago.


2021 ◽  
Author(s):  
Megan M. Foley ◽  
Steven J. Blazewicz ◽  
Karis J. McFarlane ◽  
Alex Greenlon ◽  
Michaela Hayer ◽  
...  

AbstractEarth system models project altered precipitation regimes across much of the globe. In California, the winter wet season is predicted to extend into spring, and the summer dry period to lengthen. How altered precipitation will affect soil carbon (C) persistence is a key knowledge gap. However, we do not have a mechanistic understanding of how altered soil moisture regimes will affect microbial population dynamics. Using quantitative stable isotope probing (qSIP), we compared total and active soil microbial communities across three California annual grassland ecosystems that span a rainfall gradient and have developed upon similar parent material. We also assessed multiple edaphic variables, including available C and the radiocarbon (14C) age of soil C. Samples were assayed in the wet season, when we expected environmental conditions would be most similar across sites. We hypothesized that the long-term legacy of soil water limitation would be reflected in lower community growth capacity at the driest site. We also predicted that actively growing communities would be more compositionally similar across the gradient than the total background microbiome. Across the three sites, edaphic parameters such as pH roughly sorted with mean annual precipitation, and soil carbon age increased with precipitation. Bacterial growth rates increased from the driest site to the intermediate site, and rates were comparable between the intermediate and wettest sites. These differences were persistent across major phyla, including the Actinobacteria, Bacteroidetes, and Proteobacteria. Taxonomic identity was a strong predictor of growth, such that the growth rates of a taxon at one site predicted its growth rates at the others. We think this fact, that taxa that grew quickly at one site tended to grow quickly at the others, is likely a consequence of genetically determined physiological traits, and is consistent with the idea that evolutionary history influences growth rate.


2021 ◽  
Vol 4 ◽  
Author(s):  
Alexis Garretson ◽  
Rebecca E. Forkner

Recent studies suggest climate-related delays in the timing of leaf coloration and abscission in maple trees but lack baseline data prior to the late 20th century. To better understand how autumn foliar phenology and late-season damage risks have changed for this genus over the past century, we evaluated 2,972 digitized herbaria specimens of red and sugar maple collected between 1826 and 2016 for the presence of leaves, autumn leaf coloration, and pathogen or herbivore damage. We found that the onset (first appearance) of colored leaves has shifted 0.26 days later each year, leading to a delay of more than a month in autumn phenology since 1880. We find that these shifts are related to precipitation regimes in both the fall and summer seasons and that more severe droughts are associated with higher probabilities of colored leaves. Moreover, we found that the probability of both herbivory and pathogen damage has increased significantly over the study period. In particular, we find a strong association between increasing summer drought conditions and increased probability of herbivory. Furthermore, the presence of foliar damage increased the probability of leaf coloration on herbaria specimens. However, the end-of-season abscission date (last appearance of leaves) was strongly associated with herbivory and climate in a contrary direction: Increasing yearly drought, higher fall temperatures, and the presence of herbivory were associated with earlier abscission. In fact, the last leaf dates for specimens with herbivory were nearly 2 weeks earlier than specimens without herbivore damage. Our study documents significant changes in maple senescence over the last 150 years and suggests that incorporating herbivory into models may improve our ability to predict forest responses to climate shifts.


2021 ◽  
pp. 1-18
Author(s):  
Quoc Bao Pham ◽  
Subodh Chandra Pal ◽  
Asish Saha ◽  
Indrajit Chowdhuri ◽  
Jasem A Albanai ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 69 (4) ◽  
pp. 553-562
Author(s):  
B. A. ASHABOKOV ◽  
M. N. BEYTUGANOV ◽  
A. A. TASHILOVA ◽  
L. M. FEDCHENKO ◽  
A. V. SHAPOVALOV

Sign in / Sign up

Export Citation Format

Share Document