Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data

2004 ◽  
Vol 13 (5) ◽  
pp. 1099-1109 ◽  
Author(s):  
Tianhua He ◽  
Siegfried L. Krauss ◽  
Byron B. Lamont ◽  
Ben P. Miller ◽  
Neal J. Enright
2018 ◽  
Vol 150 (3) ◽  
pp. 378-392 ◽  
Author(s):  
Abdoolnabi Bagheri ◽  
Yaghoub Fathipour ◽  
Majeed Askari-Seyahooei ◽  
Mehrshad Zeinalabedini

AbstractOmmatissus lybicus de Bergevin (Hemiptera: Tropiduchidae) is a key pest of date palm (Phoenix dactylifera Linnaeus; Arecaceae) with worldwide distribution and various management strategies. To study genetic diversity of date palm hopper, a series of experiments was conducted on genetic structure and genetic diversity of 15 geographic populations of O. lybicus (Abu Musa, Bam, Bushehr, Behbahan, Tezerj, Fin, Jiroft, Shahdad, Jahrom, Ghire Karzin, Ghasre Shirin, Iran; Pakistan; Oman; Egypt; and Tunisia) by amplified fragment length polymorphism, cytochrome c oxidase subunit I (COI), and 28S rRNA markers. Analysis of molecular variance analysis of amplified fragment length polymorphism data and COI sequences revealed a significant variation among O. lybicus populations (94.12% and 65.08% similarities for amplified fragment length polymorphism and COI, respectively). The 28S rDNA sequences from different populations were identical. Phylogenetic network inferred from amplified fragment length polymorphism data and COI sequences grouped two geographically close populations (Tezerj and Bam) in the two distinct clades while far apart geographical populations bunched in the same or close clades. These two populations experience repeated exposure to heavy pesticide applications annually. In conclusion, study of the genetic structure revealed a considerable variation between O. lybicus populations under intensive chemical strategies.


2007 ◽  
Vol 97 (12) ◽  
pp. 1568-1577 ◽  
Author(s):  
N. Ah-You ◽  
L. Gagnevin ◽  
F. Chiroleu ◽  
E. Jouen ◽  
J. Rodrigues Neto ◽  
...  

Bacterial black spot, caused by Xanthomonas campestris pv. mangiferaeindicae, is an important disease of mango (Mangifera indica). Several other plant genera of the family Anacardiaceae were described as host species for xanthomonads. We studied pathological variations among strains in a worldwide collection from several Anacardiaceae genera. Strains were classified into three pathogenicity groups. Group I strains (from the Old World) multiplied markedly in leaf tissue of mango and cashew (Anacardium occidentale). Group II strains (from Brazil) multiplied markedly in cashew leaf tissue, but not in mango. Moreover, mango leaves inoculated with group I and group II strains exhibited lesions with different morphologies, consistent with variations in symptomology previously reported on mango under field conditions. Group I strains produced black, raised lesions, consistent with the original description of the pathovar, whereas group II strains produced brownish, flat lesions. Group III strains produced a unique syndrome on ambarella (Spondias dulcis) and mombin (Spondias mombin). Based on evolutionary genome divergence derived from amplified fragment length polymorphism (AFLP) data, the three groups were genetically distinct and were related to groups 9.5, 9.6, and 9.4 of X. axonopodis identified by Rademaker, respectively. As each group was characterized by unique symptomology and/or host range, we propose that X. campestris pv. mangiferaeindicae be split into three pathovars of X. axonopodis: X. axonopodis pv. mangiferaeindicae, X. axonopodis pv. anacardii, and X. axonopodis pv. spondiae. Within pv. mangiferaeindicae sensu novo, AFLP data were consistent with that previously published for restriction fragment length polymorphism groups and suggested long-distance movement of the pathogen, likely through propagative material.


Sign in / Sign up

Export Citation Format

Share Document