A novel oxalosuccinate‐forming enzyme involved in the reductive carboxylation of 2‐oxoglutarate in Hydrogenobacter thermophilus TK‐6

2006 ◽  
Vol 62 (3) ◽  
pp. 748-759 ◽  
Author(s):  
Miho Aoshima ◽  
Yasuo Igarashi
2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Kara Mannor ◽  
George M Garrity

1969 ◽  
Vol 115 (4) ◽  
pp. 633-638 ◽  
Author(s):  
R. H. Villet ◽  
K. Dalziel

1. It was shown that dissolved CO2 and not HCO3− or H2CO3 is the primary substrate for reductive carboxylation with 6-phosphogluconate dehydrogenase from sheep liver. 2. The equilibrium constant of the reaction was measured in solutions of various ionic strengths and at several temperatures, and the free energy and heat of reaction were determined.


1971 ◽  
Vol 121 (3) ◽  
pp. 431-437 ◽  
Author(s):  
Milton J. Allison ◽  
J. L. Peel

1. Growing cultures of Peptostreptococcus elsdenii and Bacteroides ruminicola incorporate 14C from [1-14C]isobutyrate into the valine of cell protein. With P. elsdenii some of the 14C is also incorporated into leucine. 2. Crude cell-free extracts of both organisms in the presence of glutamine, carbon dioxide and suitable sources of energy and electrons incorporate 14C from [1-14C]isobutyrate into valine but not into leucine. 3. With extracts of P. elsdenii treated with DEAE-cellulose the reaction is dependent on ATP, CoA, thiamin pyrophosphate, molecular hydrogen and a low-potential electron carrier (ferredoxin, flavodoxin or benzyl viologen). 4. The same extracts incorporate 14C from NaH14CO3 into valine in the presence of isobutyrate plus ATP, CoA, glutamine and ferredoxin; isobutyryl-CoA or isobutyryl phosphate plus CoA will replace the isobutyrate plus CoA and ATP. With acetyl phosphate in place of isobutyryl phosphate, 14C is incorporated into alanine. With isovalerate or 2-methylbutyrate in place of isobutyrate, 14C is incorporated into leucine and isoleucine respectively. 5. When carrier 2-oxoisovalerate is added to the carboxylating system 14C from [1-14C]isobutyrate passes into the oxo acid fraction. 6. It is concluded that these two organisms form valine from isobutyrate by the sequence isobutyrate→isobutyryl-CoA→2-oxoisovalerate→valine and that the reductive carboxylation of isobutyrate is catalysed by a system similar to the pyruvate synthetase of clostridia and photosynthetic bacteria.


Author(s):  
Andreu Tortajada ◽  
Marino Börjesson ◽  
Ruben Martin

Sign in / Sign up

Export Citation Format

Share Document