electron carrier
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 22)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Vol 15 (11) ◽  
pp. e0009991
Author(s):  
Margot J. Lautens ◽  
June H. Tan ◽  
Xènia Serrat ◽  
Samantha Del Borrello ◽  
Michael R. Schertzberg ◽  
...  

Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhan Song ◽  
Cancan Wei ◽  
Chao Li ◽  
Xin Gao ◽  
Shuhong Mao ◽  
...  

AbstractFerredoxin (Fdx) is regarded as the main electron carrier in biological electron transfer and acts as an electron donor in metabolic pathways of many organisms. Here, we screened a self-sufficient P450-derived reductase PRF with promising production yield of 9OHAD (9α-hydroxy4-androstene-3,17-dione) from AD, and further proved the importance of [2Fe–2S] clusters of ferredoxin-oxidoreductase in transferring electrons in steroidal conversion. The results of truncated Fdx domain in all oxidoreductases and mutagenesis data elucidated the indispensable role of [2Fe–2S] clusters in the electron transfer process. By adding the independent plant-type Fdx to the reaction system, the AD (4-androstene-3,17-dione) conversion rate have been significantly improved. A novel efficient electron transfer pathway of PRF + Fdx + KshA (KshA, Rieske-type oxygenase of 3-ketosteroid-9-hydroxylase) in the reaction system rather than KshAB complex system was proposed based on analysis of protein–protein interactions and redox potential measurement. Adding free Fdx created a new conduit for electrons to travel from reductase to oxygenase. This electron transfer pathway provides new insight for the development of efficient exogenous Fdx as an electron carrier. Graphical Abstract


Author(s):  
Zhan Song ◽  
Cancan Wei ◽  
Chao Li ◽  
Xin Gao ◽  
Shuhong Mao ◽  
...  

Ferredoxin (Fdx) is regarded as the main electron carrier in biological electron transfer and acts as an electron donor in metabolic pathways of many organisms. Here, we screened a self-sufficient P450-derived reductase PRF with promising NADPH reduction activity and 9OHAD production yield and proved the importance of [2Fe-2S] clusters of Fdx-containing oxidoreductase in transferring electrons in steroidal conversion. The truncated Fdx domain in all oxidoreductases, together with mutagenesis data, further elucidated the indispensable role of [2Fe-2S] clusters in the electron transfer process. By adding the independent plant-type Fdx to the reaction system, the AD conversion rate have been significantly improved. A novel efficient electron transfer pathway of PRF+Fdx+KshA in the reaction system rather than KshAB complex system was proposed based on analysis of protein-protein interactions and redox potential measurement. Adding free Fdx created a new conduit for electrons to travel from reductase to oxygenase. This electron transfer pathway provides new insight for the development of efficient exogenous Fdx as an electron carrier.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 236
Author(s):  
Juan M. Suárez-Rivero ◽  
Carmen J. Pastor-Maldonado ◽  
Suleva Povea-Cabello ◽  
Mónica Álvarez-Córdoba ◽  
Irene Villalón-García ◽  
...  

Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.


Author(s):  
San-Dong Guo ◽  
Wen-Qi Mu ◽  
Yu-Tong Zhu ◽  
Ru-Yue Han ◽  
Wencai Ren

Janus two-dimensional (2D) materials have attracted much attention due to possessing unique properties caused by their out-of-plane asymmetry, which have been achieved in many 2D families. In this work, the...


2020 ◽  
Vol 8 (11) ◽  
pp. 1641
Author(s):  
Ruvini U. Pathirana ◽  
Cory Boone ◽  
Kenneth W. Nickerson

Ubiquinones (UQ) are intrinsic lipid components of many membranes. Besides their role in electron-transfer reactions there is evidence for them acting as free radical scavengers, yet their other roles in biological systems have received little study. The dimorphic fungal pathogen Candida albicans secretes farnesol as both a virulence factor and a quorum-sensing molecule. Thus, we were intrigued by the presence of UQ9 isoprenologue in farnesol-producing Candida species while other members of this genera harbor UQ7 as their major electron carrier. We examined the effect of UQ side chain length in Saccharomyces cerevisiae and C. albicans with a view towards identifying the mechanisms by which C. albicans protects itself from the high levels of farnesol it secretes, levels that are toxic to many other fungi including S. cerevisiae. In this study, we identify UQ9 as the major UQ isoprenoid in C. albicans, regardless of growth conditions or cell morphology. A S. cerevisiae model yeast engineered to make UQ9 instead of UQ6 was 4–5 times more resistant to exogenous farnesol than the parent yeast and this resistance was accompanied by greatly reduced reactive oxygen species (ROS) production. The resistance provided by UQ9 is specific for farnesol in that it does not increase resistance to high salt (1M NaCl) or other oxidants (5 mM H2O2 or 1 mM menadione). Additionally, the protection provided by UQ9 appears to be structural rather than transcriptional; UQ9 does not alter key transcriptional responses to farnesol stress. Here, we propose a model in which the longer UQ side chains are more firmly embedded in the mitochondrial membrane making them harder to pry out, so that in the presence of farnesol they remain functional without producing excess ROS. C. albicans and Candida dubliniensis evolved to use UQ9 rather than UQ7 as in other Candida species or UQ6 as in S. cerevisiae. This adaptive mechanism highlights the significance of UQ side chains in farnesol production and resistance quite apart from being an electron carrier in the respiratory chain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Florian Kremp ◽  
Jennifer Roth ◽  
Volker Müller

Abstract Flavin-based electron bifurcation is a long hidden mechanism of energetic coupling present mainly in anaerobic bacteria and archaea that suffer from energy limitations in their environment. Electron bifurcation saves precious cellular ATP and enables lithotrophic life of acetate-forming (acetogenic) bacteria that grow on H2 + CO2 by the only pathway that combines CO2 fixation with ATP synthesis, the Wood–Ljungdahl pathway. The energy barrier for the endergonic reduction of NADP+, an electron carrier in the Wood–Ljungdahl pathway, with NADH as reductant is overcome by an electron-bifurcating, ferredoxin-dependent transhydrogenase (Nfn) but many acetogens lack nfn genes. We have purified a ferredoxin-dependent NADH:NADP+ oxidoreductase from Sporomusa ovata, characterized the enzyme biochemically and identified the encoding genes. These studies led to the identification of a novel, Sporomusa type Nfn (Stn), built from existing modules of enzymes such as the soluble [Fe–Fe] hydrogenase, that is widespread in acetogens and other anaerobic bacteria.


2020 ◽  
Vol 117 (26) ◽  
pp. 15354-15362 ◽  
Author(s):  
Ricarda Höhner ◽  
Mathias Pribil ◽  
Miroslava Herbstová ◽  
Laura Susanna Lopez ◽  
Hans-Henning Kunz ◽  
...  

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.


Sign in / Sign up

Export Citation Format

Share Document