phosphogluconate dehydrogenase
Recently Published Documents


TOTAL DOCUMENTS

762
(FIVE YEARS 42)

H-INDEX

43
(FIVE YEARS 4)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Saeed Daneshmandi ◽  
Teresa Cassel ◽  
Richard M Higashi ◽  
Teresa W-M Fan ◽  
Pankaj Seth

Cellular metabolism has key roles in T cells differentiation and function. CD4+ T helper-1 (Th1), Th2, and Th17 subsets are highly glycolytic while regulatory T cells (Tregs) use glucose during expansion but rely on fatty acid oxidation for function. Upon uptake, glucose can enter pentose phosphate pathway (PPP) or be used in glycolysis. Here, we showed that blocking 6-phosphogluconate dehydrogenase (6PGD) in the oxidative PPP resulted in substantial reduction of Tregs suppressive function and shifts toward Th1, Th2, and Th17 phenotypes which led to the development of fetal inflammatory disorder in mice model. These in turn improved anti-tumor responses and worsened the outcomes of colitis model. Metabolically, 6PGD blocked Tregs showed improved glycolysis and enhanced non-oxidative PPP to support nucleotide biosynthesis. These results uncover critical role of 6PGD in modulating Tregs plasticity and function, which qualifies it as a novel metabolic checkpoint for immunotherapy applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Li ◽  
Kangning Li ◽  
Mingming Zheng ◽  
Xinyi Liu ◽  
Xianlong Ding ◽  
...  

Phosphorus plays an important role in plant growth and development, and is an important limiting factor for crop yield. Although previous studies have shown that 6-phosphogluconate dehydrogenase (6PGDH) plays an important role in plant resistance to adversity, its response to low phosphorus (P) stress remains unknown. In this study, we reported the cloning and characterization of a cytosolic 6PGDH gene, Gm6PGDH1, which enhanced the tolerance to phosphate (Pi) starvation by improving root system development and modifying the antioxidant system in transgenic plants. Gm6PGDH1 was highly expressed in the root at full bloom stage, and strongly induced by Pi starvation. The results from intact soybean composite plant and soybean plant, both containing a Gm6PGDH1-overexpressing construct, showed that Gm6PGDH1 was involved in root system development, and subsequently affected P uptake under Pi-deficient conditions. Meanwhile, the accumulation of reactive oxygen species (ROS) in the root tip of transgenic soybean was reduced, and the activity of ROS-scavenging enzymes was enhanced compared with those of the wild type under Pi-deficient conditions. Interestingly, we found that the overexpression of Gm6PGDH1 weakened the response of several other important Pi-answer genes to Pi starvation, such as some purple acid phosphatases (PAPs) and redox-related genes. In addition, the results from a virus-induced gene silencing (VIGS) indicated that Gm6PGDH1 might have functional redundancy in soybean, and the results from a heterogeneous transformation system showed that overexpressing Gm6PGDH1 also enhanced tolerance to Pi starvation in transgenic Arabidopsis. Together, these results suggested the great potential of Gm6PGDH1 in crop breeding for low Pi tolerance.


Author(s):  
Yuki Yoshikawa ◽  
Ryo Nasuno ◽  
Hiroshi Takagi

Abstract We showed that the isobutanol sensitivity in glucose-6-phosphate dehydrogenase-deficient cells of the yeast Saccharomyces cerevisiae was rescued by an alternative NADPH producer, acetaldehyde dehydrogenase, but not in the cells lacking 6-phosphogluconate dehydrogenase. This phenotype correlated with the intracellular NADPH/NADP+ ratio in yeast strains. Our findings indicate the importance of NADPH for the isobutanol tolerance of yeast cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haibo Wang ◽  
Minji Wang ◽  
Xiaohan Xu ◽  
Peng Gao ◽  
Zeling Xu ◽  
...  

AbstractThe rapid emergence of drug resistant Staphylococcus aureus (S. aureus) poses a serious threat to public health globally. Silver (Ag)-based antimicrobials are promising to combat antibiotic resistant S. aureus, yet their molecular targets are largely elusive. Herein, we separate and identify 38 authentic Ag+-binding proteins in S. aureus at the whole-cell scale. We then capture the molecular snapshot on the dynamic action of Ag+ against S. aureus and further validate that Ag+ could inhibit a key target 6-phosphogluconate dehydrogenase through binding to catalytic His185 by X-ray crystallography. Significantly, the multi-target mode of action of Ag+ (and nanosilver) endows its sustainable antimicrobial efficacy, leading to enhanced efficacy of conventional antibiotics and resensitization of MRSA to antibiotics. Our study resolves the long-standing question of the molecular targets of silver in S. aureus and offers insights into the sustainable bacterial susceptibility of silver, providing a potential approach for combating antimicrobial resistance.


Author(s):  
Laura Morales-Luna ◽  
Beatriz Hernández-Ochoa ◽  
Víctor Martínez-Rosas ◽  
Abigail González-Valdez ◽  
Noemi Cárdenas-Rodríguez ◽  
...  

2021 ◽  
Vol 6 ◽  
pp. 48
Author(s):  
Pablo Maturana ◽  
Eduardo Tobar-Calfucoy ◽  
Matías Fuentealba ◽  
Pietro Roversi ◽  
Richard Garratt ◽  
...  

Background: The enzyme 6-phosphogluconate dehydrogenase (6PGDH) is the central enzyme of the oxidative pentose phosphate pathway. Members of the 6PGDH family belong to different classes: either homodimeric enzymes assembled from long-chain subunits or homotetrameric ones assembled from short-chain subunits. Dimeric 6PGDHs bear an internal duplication absent in tetrameric 6PGDHs and distant homologues of the β-hydroxyacid dehydrogenase (βHADH) superfamily. Methods: We use X-ray crystallography to determine the structure of the apo form of the 6PGDH from Gluconobacter oxydans (Go6PGDH). We carried out a structural and phylogenetic analysis of short and long-chain 6PGDHs. We put forward an evolutionary hypothesis explaining the differences seen in oligomeric state vs. dinucleotide preference of the 6PGDH family. We determined the cofactor preference of Go6PGDH at different 6-phosphogluconate concentrations, characterizing the wild-type enzyme and three-point mutants of residues in the cofactor binding site of Go6PGDH. Results: The structural comparison suggests that the 6PG binding site initially evolved by exchanging C-terminal α-helices between subunits. An internal duplication event changed the quaternary structure of the enzyme from a tetrameric to a dimeric arrangement. The phylogenetic analysis suggests that 6PGDHs have spread from Bacteria to Archaea and Eukarya on multiple occasions by lateral gene transfer. Sequence motifs consistent with NAD+- and NADP+-specificity are found in the β2-α2 loop of dimeric and tetrameric 6PGDHs. Site-directed mutagenesis of Go6PGDH inspired by this analysis fully reverses dinucleotide preference. One of the mutants we engineered has the highest efficiency and specificity for NAD+ so far described for a 6PGDH. Conclusions: The family 6PGDH comprises dimeric and tetrameric members whose active sites are conformed by a C-terminal α-helix contributed from adjacent subunits. Dimeric 6PGDHs have evolved from the duplication-fusion of the tetrameric C-terminal domain before independent transitions of cofactor specificity. Changes in the conserved β2-α2 loop are crucial to modulate the cofactor specificity in Go6PGDH.


Cell Reports ◽  
2021 ◽  
Vol 34 (10) ◽  
pp. 108831
Author(s):  
Saeed Daneshmandi ◽  
Teresa Cassel ◽  
Penghui Lin ◽  
Richard M. Higashi ◽  
Gerburg M. Wulf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document