scholarly journals The galaxy power spectrum: precision cosmology from large-scale structure?

2008 ◽  
Vol 385 (2) ◽  
pp. 830-840 ◽  
Author(s):  
Ariel G. Sánchez ◽  
Shaun Cole
2020 ◽  
Vol 102 (12) ◽  
Author(s):  
Takahiro Nishimichi ◽  
Guido D’Amico ◽  
Mikhail M. Ivanov ◽  
Leonardo Senatore ◽  
Marko Simonović ◽  
...  

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Elena Massara ◽  
Francisco Villaescusa-Navarro ◽  
Shirley Ho ◽  
Neal Dalal ◽  
David N. Spergel

2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.


1991 ◽  
Vol 148 ◽  
pp. 89-95
Author(s):  
S. J. Meatheringham

The Small and Large Magellanic Clouds (SMC, LMC) are of considerable interest from a kinematical viewpoint. The tidal interation of the Clouds with each other and with the Galaxy appears to have been quite significant in recent times (Murai & Fujimoto 1980). The SMC in particular appears to have been considerably disrupted by a recent close passage to the LMC (Mathewson & Ford 1984, Mathewson 1984, Mathewson et al. 1986). For the LMC Freeman et al. (1983) found that the young and old populations have significantly different rotation solutions.Planetary Nebulae (PN) form a population with age intermediate between the HI and young clusters and the old Population II clusters. A large number of PN are known in the MCs. Sanduleak et al. (1978) compiled a list of 102 in the LMC and 28 in the SMC. Since then other authors have increased the total number known to approximately 140 in the LMC and 50 in the SMC.


2019 ◽  
Vol 485 (4) ◽  
pp. 5059-5072 ◽  
Author(s):  
Phoebe Upton Sanderbeck ◽  
Vid Iršič ◽  
Matthew McQuinn ◽  
Avery Meiksin

ABSTRACT Spatial fluctuations in ultraviolet backgrounds can subtly modulate the distribution of extragalactic sources, a potential signal and systematic for large-scale structure surveys. While this modulation has been shown to be significant for 3D Ly α forest surveys, its relevance for other large-scale structure probes has been hardly explored, despite being the only astrophysical process that likely can affect clustering measurements on the scales of ≳Mpc. We estimate that the background fluctuations, modulating the amount of H i, have a fractional effect of (0.03–0.3) × (k/[10−2 Mpc−1])−1 on the power spectrum of 21 cm intensity maps at z = 1–3. We find a smaller effect for H α and Ly α intensity mapping surveys of (0.001–0.1) × (k/[10−2 Mpc−1])−1 and even smaller effect for more traditional surveys that correlate the positions of individual H α or Ly α emitters. We also estimate the effect of backgrounds on low-redshift galaxy surveys in general based on a simple model in which background fluctuations modulate the rate halo gas cools, modulating star formation: We estimate a maximum fractional effect on the power of ∼0.01 (k/[10−2 Mpc−1])−1 at z = 1. We compare sizes of these imprints to cosmological parameter benchmarks for the next generation of redshift surveys: We find that ionizing backgrounds could result in a bias on the squeezed triangle non-Gaussianity parameter fNL that can be larger than unity for power spectrum measurements with a SPHEREx-like galaxy survey, and typical values of intensity bias. Marginalizing over a shape of the form k−1PL, where PL is the linear matter power spectrum, removes much of this bias at the cost of ${\approx } 40{{\ \rm per\ cent}}$ larger statistical errors.


2020 ◽  
Vol 499 (2) ◽  
pp. 1769-1787
Author(s):  
Anaëlle Halle ◽  
Takahiro Nishimichi ◽  
Atsushi Taruya ◽  
Stéphane Colombi ◽  
Francis Bernardeau

ABSTRACT The power spectrum response function of the large-scale structure of the Universe describes how the evolved power spectrum is modified by a small change in initial power through non-linear mode coupling of gravitational evolution. It was previously found that the response function for the coupling from small to large scales is strongly suppressed in amplitude, especially at late times, compared to predictions from perturbation theory (PT) based on the single-stream approximation. One obvious explanation for this is that PT fails to describe the dynamics beyond shell crossing. We test this idea by comparing measurements in N-body simulations to prescriptions based on PT but augmented with adaptive smoothing to account for the formation of non-linear structures of various sizes in the multistream regime. We first start with one-dimensional (1D) cosmology, where the Zel’dovich approximation provides the exact solution in the single-stream regime. Similarly to the three-dimensional (3D) case, the response function of the large-scale modes exhibits a strong suppression in amplitude at small scales that cannot be explained by the Zel’dovich solution alone. However, by performing adaptive smoothing of initial conditions to identify haloes of different sizes and solving approximately post-collapse dynamics in the three-stream regime, agreement between theory and simulations drastically improves. We extend our analyses to the 3D case using the pinocchio algorithm, in which similar adaptive smoothing is implemented on the Lagrangian PT fields to identify haloes and is combined with a spherical halo prescription to account for post-collapse dynamics. Again, a suppression is found in the coupling between small- and large-scale modes and the agreement with simulations is improved.


1985 ◽  
Vol 106 ◽  
pp. 203-204
Author(s):  
W.H. Mccutcheon ◽  
B. J. Robinson ◽  
R. N. Manchester ◽  
J. B. Whiteoak

The southern galactic-plane region, in the ranges 294° ≤ 1 ≤ 358°, −0°.075 ≤ b ≤ 0°.075, has been surveyed in the J = 1–0 line of 12CO with a sampling interval of 3′ arc. Observations were made with the 4-metre telescope at the CSIRO Division of Radiophysics in 1980 and 1981. Details of equipment and observing procedure are given in Robinson et al. (1982, 1983); see also McCutcheon et al. (1983).


2005 ◽  
Vol 216 ◽  
pp. 196-202
Author(s):  
Martin Zwaan ◽  
Martin Meyer ◽  
Rachel Webster ◽  
Lister Staveley-Smith

The HI Parkes All Sky Survey (HIPASS) offers a unique perspective on the galaxy population in the local universe. A catalogue of 4315 HI-selected galaxies has been extracted from the southern region of the survey (δ < +2°). This catalogue gives a clear view of the local large-scale structure and is used to study the two-point correlation function, the Tully-Fisher relation, and galaxy luminosity and mass functions. Some initial results are discussed here.


1978 ◽  
Vol 77 ◽  
pp. 33-48 ◽  
Author(s):  
P.C. van der Kruit

This review concerns the large-scale structure of radio continuum emission in spiral galaxies (“the smooth background”), by which we mean the distribution of radio surface brightness at scales larger than, say, 1 kpc. Accordingly the nuclear emission and structure due to spiral arms and HII regions will not be a major topic of discussion here. Already the first mappings of the galactic background suggested that there is indeed a distribution of radio continuum emission extending throughout the Galaxy. This conclusion has been reinforced by the earliest observations of M31 by showing that the general emission from this object extended over at least the whole optical image. More recently, van der Kruit (1973a, b, c) separated the radio emission from a sample of spiral galaxies observed at 1415 MHz with the Westerbork Synthesis Radio Telescope (WSRT) into a nuclear, spiral arm and “base disk” component, showing that the latter component usually contains most of the flux density. This latter component is largely non-thermal and extends over the whole optical image (see also van der Kruit and Allen, 1976). Clearly it is astrophysically interesting to discuss the large-scale structure of the radio continuum emission.


Sign in / Sign up

Export Citation Format

Share Document