planetary nebulae
Recently Published Documents


TOTAL DOCUMENTS

3894
(FIVE YEARS 118)

H-INDEX

83
(FIVE YEARS 5)

2022 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Jordan Simpson ◽  
David Jones ◽  
Roger Wesson ◽  
Jorge García-Rojas

Abstract A30 belongs to a class of planetary nebulae identified as “born-again”, containing dense, hydrogen-poor ejecta with extreme abundance discrepancy factors (ADFs), likely associated with a central binary system. We present intermediate-dispersion spectroscopy of one such feature—the J4 equatorial knot. We confirm the apparent physical and chemical segregation of the polar and equatorial knots observed in previous studies, and place an upper limit on the ADF for O2+ of 35, significantly lower than that of the polar knots. These findings further reinforce the theory that the equatorial and polar knots originate from different events.


2021 ◽  
Vol 21 (11) ◽  
pp. 275
Author(s):  
Willem A. Baan ◽  
Hiroshi Imai ◽  
Gabor Orosz

Abstract The subclass of bipolar Planetary Nebulae (PNe) exhibits well-defined low-power outflows and some shows shock-related equatorial spiderweb structures and hourglass structures surrounding these outflows. These structures are distinctly different from the phenomena associated with spherical and elliptical PNe and suggest a non-standard way to simultaneously energise both kinds of structures. This paper presents evidence from the published literature on bipolar PN Hb 12 and other sources in support of an alternative scenario for energising these structures by means of accretion from material shells deposited during earlier post-AGB and pre-PNe evolutionary stages. In addition to energising the bipolar outflow, a sub-Eddington accretion scenario could hydrodynamically explain the spiderweb and outer hourglass structures as oblique shockwaves for guiding the accreting material into the equatorial region of the source. Estimates of the accretion rate resulting from fallback-related spherical accretion could indeed help to drive a low-power outflow and contribute to the total luminosity of these sources.


2021 ◽  
Vol 257 (2) ◽  
pp. 58
Author(s):  
A. Danehkar

Abstract Wolf–Rayet ([WR]) and weak-emission-line (wels) central stars of planetary nebulae (PNs) have hydrogen-deficient atmospheres, whose origins are not well understood. In the present study, we have conducted plasma diagnostics and abundance analyses of 18 Galactic PNs surrounding [WR] and wels nuclei, using collisionally excited lines (CELs) and optical recombination lines (ORLs) measured with the Wide Field Spectrograph on the Australian National University 2.3 m telescope at the Siding Spring Observatory complemented with optical archival data. Our plasma diagnostics imply that the electron densities and temperatures derived from CELs are correlated with the intrinsic nebular Hβ surface brightness and excitation class, respectively. Self-consistent plasma diagnostics of heavy-element ORLs of N2+ and O2+ suggest that a small fraction of cool (≲7000 K), dense (∼104–105 cm−3) materials may be present in some objects, though with large uncertainties. Our abundance analyses indicate that the abundance discrepancy factors (ADFs ≡ ORLs/CELs) of O2+ are correlated with the dichotomies between forbidden-line and He i temperatures. Our results likely point to the presence of a tiny fraction of cool, oxygen-rich dense clumps within diffuse warm ionized nebulae. Moreover, our elemental abundances derived from CELs are mostly consistent with asymptotic giant branch models in the range of initial masses from 1.5 to 5 M ⊙. Further studies are necessary to understand better the origins of abundance discrepancies in PNs around [WR] and wels stars.


Author(s):  
M. Santander-García ◽  
D. Jones ◽  
J. Alcolea ◽  
V. Bujarrabal ◽  
R. Wesson

Author(s):  
I. Gonzalez-Santamaria ◽  
M. Manteiga ◽  
A. Manchado ◽  
A. Ulla ◽  
C. Dafonte ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 40
Author(s):  
Iker González-Santamaría ◽  
Minia Manteiga ◽  
Carlos Dafonte

The aim of this work is to search for evidence of close binary stars associated with planetary nebulae (ionized stellar envelopes in expansion) by mining the astronomical archive of Gaia EDR3. For this task, using big data techniques, we selected a sample of central stars of planetary nebulae from almost 2000 million sources in an EDR3 database. Then, we analysed some of their parameters, which could provide clues about the presence of close binary systems, and we ran a statistical test to verify the results. Using this method, we concluded that red stars tend to show more affinity with close binarity than blue ones.


Author(s):  
R. Galera-Rosillo ◽  
A. Mampaso ◽  
R. L. M. Corradi ◽  
J. García-Rojas ◽  
B. Balick ◽  
...  
Keyword(s):  

2021 ◽  
Vol 57 (2) ◽  
pp. 269-277
Author(s):  
A. Castellanos-Ramírez ◽  
A. C. Raga ◽  
J. Cantó ◽  
A. Rodríguez-González ◽  
L. Hernández-Martínez

High velocity clumps joined to the outflow source by emission with a “Hubble law” ramp of linearly increasing radial velocity vs. distance are observed in some planetary nebulae and in some outflows in star formation regions. We propose a simple model in which a “clump” is ejected from a source over a period τ0, with a strong axis to edge velocity stratification. This non-top hat cross section results in the production of a highly curved working surface (initially being pushed by the ejected material, and later coasting along due to its inertia). From both analytic models and numerical simulations we find that this working surface has a linear velocity vs. position ramp, and therefore reproduces in a qualitative way the “Hubble law clumps” in planetary nebulae and outflows from young stars.


2021 ◽  
Vol 919 (2) ◽  
pp. 121
Author(s):  
Marcin Hajduk ◽  
Marijke Haverkorn ◽  
Timothy Shimwell ◽  
Mateusz Olech ◽  
Joseph R. Callingham ◽  
...  

Author(s):  
Leticia Juan de Dios ◽  
Mónica Rodríguez

Abstract We study the density structures of planetary nebulae implied by four diagnostics that sample different regions within the nebulae: [S ii] λ6716/λ6731, [O ii] λ3726/λ3729, [Cl iii] λ5518/λ5538, and [Ar iv] λ4711/λ4740. We use a sample of 46 objects with deep spectra that allow the calculation of the electron density from these four diagnostics, and explore the impact that different atomic data have on the results. We compare the observational results with those obtained from photoionization models characterized by three different density structures. We conclude that the atomic data used in the calculations of electron density fully determine the density structures that are derived for the objects. We illustrate this by selecting three combinations of atomic data that lead to observational results that are compatible with each of the three different density structures explored with the models.


Sign in / Sign up

Export Citation Format

Share Document