scholarly journals Anti-symmetric clustering signals in the observed power spectrum

2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.

1987 ◽  
Vol 124 ◽  
pp. 335-348
Author(s):  
Neta A. Bahcall

The evidence for the existence of very large scale structures, ∼ 100h−1Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. Detection of a ∼ 2000 kms−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016.5M⊙ and may contain a larger amount of dark matter than previously anticipated.


1994 ◽  
Vol 431 ◽  
pp. 559 ◽  
Author(s):  
Wojciech H. Zurek ◽  
Peter J. Quinn ◽  
John K. Salmon ◽  
Michael S. Warren

2019 ◽  
Vol 624 ◽  
pp. A61 ◽  
Author(s):  
Fabien Lacasa ◽  
Julien Grain

We present a numerically cheap approximation to super-sample covariance (SSC) of large-scale structure cosmological probes, first in the case of angular power spectra. No new elements are needed besides those used to predict the considered probes, thus relieving analysis pipelines from having to develop a full SSC modeling, and reducing the computational load. The approximation is asymptotically exact for fine redshift bins Δz → 0. We furthermore show how it can be implemented at the level of a Gaussian likelihood or a Fisher matrix forecast as a fast correction to the Gaussian case without needing to build large covariance matrices. Numerical application to a Euclid-like survey show that, compared to a full SSC computation, the approximation nicely recovers the signal-to-noise ratio and the Fisher forecasts on cosmological parameters of the wCDM cosmological model. Moreover, it allows for a fast prediction of which parameters are going to be the most affected by SSC and at what level. In the case of photometric galaxy clustering with Euclid-like specifications, we find that σ8, ns, and the dark energy equation of state w are particularly heavily affected. We finally show how to generalize the approximation for probes other than angular spectra (correlation functions, number counts, and bispectra) and at the likelihood level, allowing for the latter to be non-Gaussian if necessary. We release publicly a Python module allowing the implementation of the SSC approximation and a notebook reproducing the plots of the article.


2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Elena Massara ◽  
Francisco Villaescusa-Navarro ◽  
Shirley Ho ◽  
Neal Dalal ◽  
David N. Spergel

2019 ◽  
Vol 485 (4) ◽  
pp. 5059-5072 ◽  
Author(s):  
Phoebe Upton Sanderbeck ◽  
Vid Iršič ◽  
Matthew McQuinn ◽  
Avery Meiksin

ABSTRACT Spatial fluctuations in ultraviolet backgrounds can subtly modulate the distribution of extragalactic sources, a potential signal and systematic for large-scale structure surveys. While this modulation has been shown to be significant for 3D Ly α forest surveys, its relevance for other large-scale structure probes has been hardly explored, despite being the only astrophysical process that likely can affect clustering measurements on the scales of ≳Mpc. We estimate that the background fluctuations, modulating the amount of H i, have a fractional effect of (0.03–0.3) × (k/[10−2 Mpc−1])−1 on the power spectrum of 21 cm intensity maps at z = 1–3. We find a smaller effect for H α and Ly α intensity mapping surveys of (0.001–0.1) × (k/[10−2 Mpc−1])−1 and even smaller effect for more traditional surveys that correlate the positions of individual H α or Ly α emitters. We also estimate the effect of backgrounds on low-redshift galaxy surveys in general based on a simple model in which background fluctuations modulate the rate halo gas cools, modulating star formation: We estimate a maximum fractional effect on the power of ∼0.01 (k/[10−2 Mpc−1])−1 at z = 1. We compare sizes of these imprints to cosmological parameter benchmarks for the next generation of redshift surveys: We find that ionizing backgrounds could result in a bias on the squeezed triangle non-Gaussianity parameter fNL that can be larger than unity for power spectrum measurements with a SPHEREx-like galaxy survey, and typical values of intensity bias. Marginalizing over a shape of the form k−1PL, where PL is the linear matter power spectrum, removes much of this bias at the cost of ${\approx } 40{{\ \rm per\ cent}}$ larger statistical errors.


1988 ◽  
Vol 130 ◽  
pp. 293-300
Author(s):  
A.G. Doroshkevich ◽  
A.A. Klypin ◽  
M.U. Khlopov

Processes of the formation and the evolution of the large-scale structure are discussed in the framework of unstable dark matter models. Six numerical models are presented. The projected distribution of simulated galaxies on the sky, wedge diagrams, correlation functions and the mean linear scale of voids are presented. Physical background of the hypothesis of unstable particles and possible observational tests are discussed. The level of the microwave background fluctuations is estimated analytically. Special attention is given to late stage of supercluster evolution and galaxy formation.


1987 ◽  
Vol 124 ◽  
pp. 415-432
Author(s):  
Avishai Dekel

Although some theories, such as that of cold dark matter, are quite successful in explaining certain aspects of the formation of structure, we seem not to approach a satisfactory theory which can easily account for all the observational constraints on all scales. Most difficult to explain are the indicated clustering of clusters and bulk velocities on very large scales, when considered together with the structure on galactic scales and the isotropy of the microwave background. If these observations are correct, the only scenarios that can work are hybrids of certain sorts, which involve somewhat ad hoc choices of parameters; they are not the theories that would have emerged naturally from first principles, and they do not satisfy the criteria of simplicity and elegancy. I will discuss the currently popular scenarios and the apparent difficulties they face.


Sign in / Sign up

Export Citation Format

Share Document