Subtypes of non-transformed human mammary epithelial cells cultured in vitro: histo-blood group antigen H type 2 defines basal cell-derived cells

1993 ◽  
Vol 54 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Uwe Karsten ◽  
Gisela Papsdorf ◽  
Borivoj Vojtesek ◽  
Roland Moll ◽  
E. Birgitte Lane ◽  
...  
1986 ◽  
Vol 103 (6) ◽  
pp. 2683-2696 ◽  
Author(s):  
A Rapraeger ◽  
M Jalkanen ◽  
M Bernfield

The cell surface proteoglycan on normal murine mammary gland mouse mammary epithelial cells consists of an ectodomain bearing heparan and chondroitin sulfate chains and a lipophilic domain that is presumed to be intercalated into the plasma membrane. Because the ectodomain binds to matrix components produced by stromal cells with specificity and high affinity, we have proposed that the cell surface proteoglycan is a matrix receptor that binds epithelial cells to their underlying basement membrane. We now show that the proteoglycan surrounds cells grown in subconfluent or newly confluent monolayers, but becomes restricted to the basolateral surface of cells that have been confluent for a week or more; Triton X-100 extraction distinguishes three fractions of cell surface proteoglycan: a fraction released by detergent and presumed to be free in the membrane, a fraction bound via a salt-labile linkage, and a nonextractable fraction; the latter two fractions co-localize with actin filament bundles at the basal cell surface; and when proteoglycans at the apical cell surface are cross-linked by antibodies, they initially assimilate into detergent-resistant, immobile clusters that are subsequently aggregated by the cytoskeleton. These findings suggest that the proteoglycan, initially present on the entire surface and free in the plane of the membrane, becomes sequestered at the basolateral cell surface and bound to the actin-rich cytoskeleton as the cells become polarized in vitro. Binding of matrix components may cross-link proteoglycans at the basal cell surface and cause them to associate with the actin cytoskeleton, providing a mechanism by which the cell surface proteoglycan acts as a matrix receptor to stabilize the morphology of epithelial sheets.


1995 ◽  
Vol 3 (6) ◽  
pp. 412-419 ◽  
Author(s):  
Tracy Chui-Hsu Yang ◽  
Kerry A. Georgy ◽  
Azar Tavakoli ◽  
Laurie M. Craise ◽  
Marco Durante

2021 ◽  
Vol 12 ◽  
Author(s):  
Sandy Haidar Ahmad ◽  
Sébastien Pasquereau ◽  
Ranim El Baba ◽  
Zeina Nehme ◽  
Clara Lewandowski ◽  
...  

Human cytomegalovirus is being recognized as a potential oncovirus beside its oncomodulation role. We previously isolated two clinical isolates, HCMV-DB (KT959235) and HCMV-BL (MW980585), which in primary human mammary epithelial cells promoted oncogenic molecular pathways, established anchorage-independent growth in vitro, and produced tumorigenicity in mice models, therefore named high-risk oncogenic strains. In contrast, other clinical HCMV strains such as HCMV-FS, KM, and SC did not trigger such traits, therefore named low-risk oncogenic strains. In this study, we compared high-risk oncogenic HCMV-DB and BL strains (high-risk) with low-risk oncogenic strains HCMV-FS, KM, and SC (low-risk) additionally to the prototypic HCMV-TB40/E, knowing that all strains infect HMECs in vitro. Numerous pro-oncogenic features including enhanced expression of oncogenes, cell survival, proliferation, and epithelial-mesenchymal transition genes were observed with HCMV-BL. In vitro, mammosphere formation was observed only in high-risk strains. HCMV-TB40/E showed an intermediate transcriptome landscape with limited mammosphere formation. Since we observed that Ki67 gene expression allows us to discriminate between high and low-risk HCMV strains in vitro, we further tested its expression in vivo. Among HCMV-positive breast cancer biopsies, we only detected high expression of the Ki67 gene in basal tumors which may correspond to the presence of high-risk HCMV strains within tumors. Altogether, the transcriptome of HMECs infected with HCMV clinical isolates displays an “oncogenic gradient” where high-risk strains specifically induce a prooncogenic environment which might participate in breast cancer development.


Sign in / Sign up

Export Citation Format

Share Document