scholarly journals Peroxisomal beta-oxidation system of Candida tropicalis. Purification of a multifunctional protein possessing enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA epimerase activities

1985 ◽  
Vol 148 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Myrthala MORENO DE LA GARZA ◽  
Ursula SCHULTZ-BORCHARD ◽  
John W. CRABB ◽  
Wolf-H. KUNAU
1978 ◽  
Vol 83 (2) ◽  
pp. 609-613 ◽  
Author(s):  
Susumu KAWAMOTO ◽  
Chikateru NOZAKI ◽  
Atsuo TANAKA ◽  
Saburo FUKUI

1997 ◽  
Vol 321 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Martine DIEUAIDE-NOUBHANI ◽  
Dmitry NOVIKOV ◽  
Joël VANDEKERCKHOVE ◽  
Paul P. Van VELDHOVEN ◽  
Guy P. MANNAERTS

In this study we attempted to determine the number of 2-enoyl-CoA hydratases involved in peroxisomal β-oxidation. We therefore separated peroxisomal proteins from rat liver on several chromatographic columns and measured hydratase activities on the eluates with different substrates. The results indicate that rat liver peroxisomes contain two hydratase activities: (1) a hydratase activity associated with multifunctional protein 1 (MFP-1) (2-enoyl-CoA hydratase/Δ3,Δ2-enoyl-CoA isomerase/l-3-hydroxyacyl-CoA dehydrogenase) and (2) a hydratase activity associated with MFP-2 (17β-hydroxysteroid dehydrogenase/d-3-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase). MFP-1 forms and dehydrogenates l-3-hydroxyacyl-CoA species, whereas MFP-2 forms and dehydrogenates d-3-hydroxyacyl-CoA species. A portion of MFP-2 is proteolytically cleaved, most probably in the peroxisome, into a 34 kDa 17β-hydroxysteroid dehydrogenase/d-3-hydroxyacyl-CoA dehydrogenase and a 45 kDa d-specific 2-enoyl-CoA hydratase. Finally, the results confirm that MFP-1 is involved in the degradation of straight-chain fatty acids, whereas MFP-2 and its cleavage products seem to be involved in the degradation of the side chain of cholesterol (bile acid synthesis)


1984 ◽  
Vol 99 (6) ◽  
pp. 2241-2246 ◽  
Author(s):  
R A Rachubinski ◽  
Y Fujiki ◽  
R M Mortensen ◽  
P B Lazarow

We investigated the site of synthesis of two abundant proteins in clofibrate-induced rat hepatic peroxisomes. RNA was extracted from free and membrane-bound polysomes, heated to improve translational efficiency, and translated in the mRNA-dependent, reticulocyte-lysate-cell-free, protein-synthesizing system. The peroxisomal acyl-CoA oxidase and enoyl-CoA hydratase-beta-hydroxyacyl-CoA dehydrogenase 35S-translation products were isolated immunochemically, analyzed by SDS PAGE and fluorography, and quantitated by densitometric scanning. The RNAs coding for these two peroxisomal proteins were found predominantly on free polysomes, and the translation products co-migrated with the mature proteins. As in normal rat liver, preproalbumin and catalase were synthesized mainly by membrane-bound and by free polysomes, respectively. mRNAs for a number of minor 35S-translation products also retained by the anti-peroxisomal immunoadsorbent were similarly found on free polysomes. These results, together with previous data, allow the generalization that the content proteins of rat liver peroxisomes are synthesized on free polysomes, and the data imply a posttranslational packaging mechanism for these major content proteins.


Sign in / Sign up

Export Citation Format

Share Document