Molecular markers linked to rhizomania resistance in sugar beet, Beta vulgaris, from two different sources map to the same linkage group

1997 ◽  
Vol 116 (5) ◽  
pp. 401-408 ◽  
Author(s):  
G. Giorio ◽  
M. Gallitelli ◽  
F. Carriero
Genome ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 171-175 ◽  
Author(s):  
J. Schondelmaier ◽  
T. Schmidt ◽  
C. Jung ◽  
J. S. Heslop-Harrison

A digoxigenin-labelled 5S rDNA probe containing the 5S rRNA gene and the adjacent intergenic spacer was used for in situ hybridization to metaphase and interphase chromosomes of a trisomic stock from sugar beet (Beta vulgaris L.). Three chromosomes of primary trisomic line IV (T. Butterfass. Z. Bot. 52: 46–77. 1964) revealed signals close to the centromeres. Polymorphisms of 5S rDNA repeats in a segregating population were used to map genetically the 5S rRNA genes within a cluster of markers in linkage group II of sugar beet. The concentration of genetic markers around the centromere presumably reflects the suppressed recombination frequency in centromeric regions. The correlation of physical and genetic data allowed the assignment of a linkage group to sugar beet chromosome IV according to line IV of the primary trisomics.Key words: Beta vulgaris, sugar beet, 5S rRNA, in situ hybridization, RFLPs, trisomics.


2017 ◽  
Vol 77 (2) ◽  
pp. 312
Author(s):  
Peyman Norouzi ◽  
Seyed Bagher Mahmoudi ◽  
Saeed Darabi ◽  
Mozhdeh Kakueinezhad

Genome ◽  
2007 ◽  
Vol 50 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Jens Christoph Lein ◽  
Katrin Asbach ◽  
Yanyan Tian ◽  
Daniela Schulte ◽  
Chunyan Li ◽  
...  

Worldwide, rhizomania is the most important disease of sugar beet. The only way to control this disease is to use resistant varieties. Four full-length resistance gene analogues (RGAs) from sugar beet (cZR-1, cZR-3, cZR-7, and cZR-9) were used in this study. Their predicted polypeptides carry typical nucleotide-binding sites (NBSs) and leucin-rich repeat (LRR) regions, and share high homology to various plant virus resistance genes. Their corresponding alleles were cloned and sequenced from a rhizomania resistant genotype. The 4 RGAs were mapped as molecular markers, using sequence-specific primers to determine their linkage to the rhizomania resistance locus Rz1 in a population segregating for rhizomania resistance. One cZR-3 allele, named Rz-C, together with 5 other molecular markers, mapped to the Rz1 locus on chromosome 3 and cosegregated with quantitative trait loci for rhizomania resistance. After screening a bacterial artificial chromosome (BAC) library, 25 cZR-3-positive BACs were identified. Of these, 15 mapped within an interval of approximately 14 cM on chromosome 3, in clusters close to the Rz1 locus. Rz-C differentiates between susceptible and resistant beet varieties, and its transcripts could be detected in all rhizomania resistant varieties investigated. The potential of this RGA marker for cloning of rhizomania resistance genes is discussed.


2013 ◽  
Vol 32 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Mari Moritani ◽  
Kazunori Taguchi ◽  
Kazuyoshi Kitazaki ◽  
Hiroaki Matsuhira ◽  
Takaya Katsuyama ◽  
...  

2014 ◽  
Vol 104 (8) ◽  
pp. 886-896 ◽  
Author(s):  
Paul A. Covey ◽  
Brett Kuwitzky ◽  
Mia Hanson ◽  
Kimberly M. Webb

Sugar beet (Beta vulgaris) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and can lead to significant reductions in root yield, sucrose percentage, juice purity, and storability. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum strains isolated from symptomatic sugar beet are nonpathogenic. Identifying pathogenicity factors and their diversity in the F. oxysporum f. sp. betae population could further understanding of how this pathogen causes disease and potentially provide molecular markers to rapidly identify pathogenic isolates. This study used several previously described fungal effector genes (Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, Snf1, and Ste12) as genetic markers, in a population of 26 pathogenic and nonpathogenic isolates of F. oxysporum originally isolated from symptomatic sugar beet. Of the genes investigated, six were present in all F. oxysporum isolates from sugar beet (Fmk1, Fow1, PelA, Rho1, Snf1, and Ste12), and seven were found to be dispersed within the population (Pda1, PelD, Pep1, Prt1, Sge1, Six1, and Six6). Of these, Fmk1, Fow1, PelA, Rho1, Sge1, Snf1, and Ste12 were significant in relating clade designations and PelD, and Prt1 were significant for correlating with pathogenicity in F. oxysporum f. sp. betae.


Sign in / Sign up

Export Citation Format

Share Document