Patch-clamp Analysis of Synaptic Transmission to Cerebellar Purkinje Cells of Prion Protein Knockout Mice

1995 ◽  
Vol 7 (12) ◽  
pp. 2508-2512 ◽  
Author(s):  
Jochen W. Herms ◽  
Hans A. Kretzschmar ◽  
Stefan Titz ◽  
Bernhard U. Keller
2021 ◽  
Author(s):  
Huijie Feng ◽  
Yukun Yuan ◽  
Michael R Williams ◽  
Alex Roy ◽  
Jeffrey Leipprandt ◽  
...  

GNAO1 encodes Gαo, a heterotrimeric G protein alpha subunit in the Gi/o family. In this report, we used a Gnao1 mouse model G203R previously described as a gain-of-function Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared to WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin), enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. While GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is the first electrophysiological investigation of the role of Gi/o protein in cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.


2019 ◽  
Vol 20 (24) ◽  
pp. 6288 ◽  
Author(s):  
Michael Rabenstein ◽  
Nico Murr ◽  
Andreas Hermann ◽  
Arndt Rolfs ◽  
Moritz J. Frech

Niemann-Pick Disease Type C1 (NPC1) is a rare hereditary neurodegenerative disease belonging to the family of lysosomal storage disorders. NPC1-patients suffer from, amongst other symptoms, ataxia, based on the dysfunction and loss of cerebellar Purkinje cells. Alterations in synaptic transmission are believed to contribute to a pathological mechanism leading to the progressive loss of Purkinje cells observed in NPC1-deficient mice. With regard to inhibitory synaptic transmission, alterations of GABAergic synapses are described but functional data are missing. For this reason, we have examined here the inhibitory GABAergic synaptic transmission of Purkinje cells of NPC1-deficient mice (NPC1−/−). Patch clamp recordings of inhibitory post-synaptic currents (IPSCs) of Purkinje cells revealed an increased frequency of GABAergic IPSCs in NPC1−/− mice. In addition, Purkinje cells of NPC1−/− mice were less amenable for modulation of synaptic transmission via the activation of excitatory NMDA-receptors (NMDA-Rs). Western blot testing disclosed a reduced protein level of phosphorylated alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) subunit GluA2 in the cerebella of NPC1−/− mice, indicating a disturbance in the internalization of GluA2-containing AMPA-Rs. Since this is triggered by the activation of NMDA-Rs, we conclude that a disturbance in the synaptic turnover of AMPA-Rs underlies the defective inhibitory GABAergic synaptic transmission. While these alterations precede obvious signs of neurodegeneration of Purkinje cells, we propose a contribution of synaptic malfunction to the initiation of the loss of Purkinje cells in NPC1. Thus, a prevention of the disturbance of synaptic transmission in early stages of the disease might display a target with which to avert progressive neurodegeneration in NPC1.


Sign in / Sign up

Export Citation Format

Share Document