α2 adrenoceptor
Recently Published Documents


TOTAL DOCUMENTS

920
(FIVE YEARS 28)

H-INDEX

56
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jianlong Bu ◽  
Wu Xiaohong ◽  
Deng Lin ◽  
Ma Chao ◽  
Shi Xiaoding ◽  
...  

Abstract The pro-inflammatory (M1) and anti-inflammatory (M2) status of microglial determines the outcome of neuroinflammation, which contributes to the pathogenesis of chronic morphine tolerance. Studies report that α2-adrenoceptor agonist dexmedetomidine exerts anti-inflammatory effects in inhibiting morphine tolerance in normal and neuropathic pain animals, which has not been studied in cancer pain. Therefore, we investigate the effect of intrathecal DEX on morphine tolerance in cancer pain, and whether dexmedetomidine functions via modulating microglial activation and M1/M2 polarization. 54 Wistar rats with intrathecal catheterization were treated by morphine for 10 days. Test groups received intrathecal α2-adrenoceptor agonist dexmedetomidine or antagonist MK-467. The mRNA levels of TLR4 and NF-κB were tested by RT-PCR. The protein levels of TLR4, NF-κB, Iba-1, iNOS, CD206 were quantifed using Western blotting, and IL-10 and TNF-α were examined by ELISA. Dexmedetomidine attenuates mechanical threshold and thermal latency, and increased the expression of TLR4 and NF-κB in morphine tolerance of cancer pain. Dexmedetomidine attenuates mechanical and thermal nociception in morphine tolerance in cancer pain rats. Intrathecal DEX pre-treatment significantly increased the protein levels of microglia maker Iba-1, M2 marker CD206 and anti-inflammatory factor IL-10, while had no evident influence on the pro-inflammatory factor TNF-α and M1 marker iNOS in morphine tolerance. Our findings suggest that intrathecal dexmedetomidine attenuates morphine tolerance in cancer pain via α2-adrenoceptor pathway. Furthermore, dexmedetomidine upregulates TLR4/NF-κB pathway and induces microglia activation in chronic morphine tolerance of cancer pain. The anti-inflammatory effect of dexmedetomidine might be exerted by inducing microglia M2 polarization and increasing anti-inflammatory factor IL-10.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1355
Author(s):  
Abigail Boyd ◽  
Ileana Aragon ◽  
Justin Rich ◽  
Will McDonough ◽  
Marianna Oditt ◽  
...  

Treatment with PAN-PDE4 inhibitors has been shown to produce hypothermia in multiple species. Given the growing body of evidence that links nausea and emesis to disturbances in thermoregulation in mammals, we explored PDE4 inhibitor-induced hypothermia as a novel correlate of nausea in mice. Using knockout mice for each of the four PDE4 subtypes, we show that selective inactivation of individual PDE4 subtypes per se does not produce hypothermia, which must instead require the concurrent inactivation of multiple (at least two) PDE4 subtypes. These findings contrast with the role of PDE4s in shortening the duration of α2-adrenoceptor-dependent anesthesia, a behavioral surrogate previously used to assess the emetic potential of PDE4 inhibitors, which is exclusively affected by inactivation of PDE4D. These different outcomes are rooted in the distinct molecular mechanisms that drive these two paradigms; acting as a physiologic α2-adrenoceptor antagonist produces the effect of PDE4/PDE4D inactivation on the duration of α2-adrenoceptor-dependent anesthesia, but does not mediate the effect of PDE4 inhibitors on body temperature in mice. Taken together, our findings suggest that selective inhibition of any individual PDE4 subtype, including inhibition of PDE4D, may be free of nausea and emesis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2096
Author(s):  
John Sedin ◽  
David Dahlgren ◽  
Markus Sjöblom ◽  
Olof Nylander

The duodenal mucosa is regularly exposed to a low osmolality, and recent experiments suggest that hypotonicity increases mucosal permeability in an osmolality-dependent manner. The aim was to examine whether the sympathetic nervous system, via action on α-adrenoceptors, affects the hypotonicity-induced increase in duodenal mucosal permeability. The duodenum of anaesthetised rats was perfused in vivo with a 50 mM NaCl solution in the presence of adrenergic α-adrenoceptor drugs. Studied were the effects on mucosal permeability (blood-to-lumen clearance of 51Cr-EDTA), arterial blood pressure, luminal alkalinisation, transepithelial fluid flux, and motility. Hypotonicity induced a six-fold increase in mucosal permeability, a response that was reversible and repeatable. The α2-adrenoceptor agonist clonidine abolished the hypotonicity-induced increase in mucosal permeability, reduced arterial blood pressure, inhibited duodenal motility, and decreased luminal alkalinisation. The α2-adrenoceptor antagonists, yohimbine and idazoxan, prevented the inhibitory effect of clonidine on the hypotonicity-induced increase in mucosal permeability. The α1-agonist phenylephrine or the α1-antagonist prazosin elicited their predicted effect on blood pressure but did not affect the hypotonicity-induced increase in mucosal permeability. None of the α1- or α2-adrenoceptor drugs changed the hypotonicity-induced net fluid absorption. In conclusion, stimulation of the adrenergic α2-adrenoceptor prevents the hypotonicity-induced increase in mucosal permeability, suggesting that the sympathetic nervous system has the capability to regulate duodenal mucosal permeability.


Author(s):  
Takaomi Shimokawa ◽  
Toshitaka Nakagawa ◽  
Kohei Hayashi ◽  
Masayo Yamagata ◽  
Kozo Yoneda

2021 ◽  
Vol 26 (10) ◽  
pp. 1-4
Author(s):  
Rachel C Bennett

The first article in this two part series explored the pharmacodynamics of vatinoxan as a peripherally acting α2 adrenoceptor agonist, and in this installment the pharmacokinetics of vatinoxan and its effect on coadministered drugs are explored.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Katrin Altosaar ◽  
Poornima Balaji ◽  
Richard A. Bond ◽  
David B. Bylund ◽  
Susanna Cotecchia ◽  
...  

The nomenclature of the Adrenoceptors has been agreed by the NC-IUPHAR Subcommittee on Adrenoceptors [60, 186]. Adrenoceptors, α1 The three α1-adrenoceptor subtypes α1A, α1B and α1D are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. -(-)phenylephrine, methoxamine and cirazoline are agonists and prazosin and doxazosin antagonists considered selective for α1- relative to α2-adrenoceptors. [3H]prazosin and [125I]HEAT (BE2254) are relatively selective radioligands. S(+)-niguldipine also has high affinity for L-type Ca2+ channels. Fluorescent derivatives of prazosin (Bodipy FLprazosin- QAPB) are used to examine cellular localisation of α1-adrenoceptors. α1-Adrenoceptor agonists are used as nasal decongestants; antagonists to treat symptoms of benign prostatic hyperplasia (alfuzosin, doxazosin, terazosin, tamsulosin and silodosin, with the last two compounds being α1A-adrenoceptor selective and claiming to relax bladder neck tone with less hypotension); and to a lesser extent hypertension (doxazosin, terazosin). The α1- and β2-adrenoceptor antagonist carvedilol is used to treat congestive heart failure, although the contribution of α1-adrenoceptor blockade to the therapeutic effect is unclear. Several anti-depressants and anti-psychotic drugs are α1-adrenoceptor antagonists contributing to side effects such as orthostatic hypotension. Adrenoceptors, α2 The three α2-adrenoceptor subtypes α2A, α2B and α2C are activated by (-)-adrenaline and with lower potency by (-)-noradrenaline. brimonidine and talipexole are agonists and rauwolscine and yohimbine antagonists selective for α2- relative to α1-adrenoceptors. [3H]rauwolscine, [3H]brimonidine and [3H]RX821002 are relatively selective radioligands. There are species variations in the pharmacology of the α2A-adrenoceptor. Multiple mutations of α2-adrenoceptors have been described, some associated with alterations in function. Presynaptic α2-adrenoceptors regulate many functions in the nervous system. The α2-adrenoceptor agonists clonidine, guanabenz and brimonidine affect central baroreflex control (hypotension and bradycardia), induce hypnotic effects and analgesia, and modulate seizure activity and platelet aggregation. clonidine is an anti-hypertensive (relatively little used) and counteracts opioid withdrawal. dexmedetomidine (also xylazine) is increasingly used as a sedative and analgesic in human [31] and veterinary medicine and has sympatholytic and anxiolytic properties. The α2-adrenoceptor antagonist mirtazapine is used as an anti-depressant. The α2B subtype appears to be involved in neurotransmission in the spinal cord and α2C in regulating catecholamine release from adrenal chromaffin cells. Although subtype-selective antagonists have been developed, none are used clinically and they remain experimental tools. Adrenoceptors, β The three β-adrenoceptor subtypes β1, β2 and β3 are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. Isoprenaline is selective for β-adrenoceptors relative to α1- and α2-adrenoceptors, while propranolol (pKi 8.2-9.2) and cyanopindolol (pKi 10.0-11.0) are relatively selective antagonists for β1- and β2- relative to β3-adrenoceptors. (-)-noradrenaline, xamoterol and (-)-Ro 363 show selectivity for β1- relative to β2-adrenoceptors. Pharmacological differences exist between human and mouse β3-adrenoceptors, and the 'rodent selective' agonists BRL 37344 and CL316243 have low efficacy at the human β3-adrenoceptor whereas CGP 12177 (low potency) and L 755507 activate human β3-adrenoceptors [88]. β3-Adrenoceptors are resistant to blockade by propranolol, but can be blocked by high concentrations of bupranolol. SR59230A has reasonably high affinity at β3-adrenoceptors, but does not discriminate between the three β- subtypes [320] whereas L-748337 is more selective. [125I]-cyanopindolol, [125I]-hydroxy benzylpindolol and [3H]-alprenolol are high affinity radioligands that label β1- and β2- adrenoceptors and β3-adrenoceptors can be labelled with higher concentrations (nM) of [125I]-cyanopindolol together with β1- and β2-adrenoceptor antagonists. Fluorescent ligands such as BODIPY-TMR-CGP12177 can be used to track β-adrenoceptors at the cellular level [8]. Somewhat selective β1-adrenoceptor agonists (denopamine, dobutamine) are used short term to treat cardiogenic shock but, chronically, reduce survival. β1-Adrenoceptor-preferring antagonists are used to treat cardiac arrhythmias (atenolol, bisoprolol, esmolol) and cardiac failure (metoprolol, nebivolol) but also in combination with other treatments to treat hypertension (atenolol, betaxolol, bisoprolol, metoprolol and nebivolol) [507]. Cardiac failure is also treated with carvedilol that blocks β1- and β2-adrenoceptors, as well as α1-adrenoceptors. Short (salbutamol, terbutaline) and long (formoterol, salmeterol) acting β2-adrenoceptor-selective agonists are powerful bronchodilators used to treat respiratory disorders. Many first generation β-adrenoceptor antagonists (propranolol) block both β1- and β2-adrenoceptors and there are no β2-adrenoceptor-selective antagonists used therapeutically. The β3-adrenoceptor agonist mirabegron is used to control overactive bladder syndrome. There is evidence to suggest that β-adrenoceptor antagonists can reduce metastasis in certain types of cancer [189].


2021 ◽  
Vol 145 (1) ◽  
pp. 79-87
Author(s):  
Kohei Hayashi ◽  
Takaomi Shimokawa ◽  
Masayo Yamagata ◽  
Kozo Yoneda

2020 ◽  
Vol 7 (4) ◽  
pp. 197
Author(s):  
Teppei Kanda ◽  
Manami Gotoh ◽  
Ayumi Makino ◽  
Kayo Furumoto ◽  
Yuki Shimizu ◽  
...  

It has been reported that α2-adrenoceptor agonists such as medetomidine decrease tear flow in many species, including rats. Few studies have investigated the involvement of α2-adrenoceptor in decreased tear flow; the issue has not been illustrated sufficiently. Therefore, we aimed to investigate the effect of different doses of atipamezole on the reversal of medetomidine-induced tear-flow decrease to reveal the specific involvement of α2-adrenoceptor. Treatment with 400, 800, or 1600 µg/kg atipamezole (or saline as the control) was intramuscularly administered to rats 15 min following intramuscular administration of 200 µg/kg medetomidine. After medetomidine administration, tear flow was measured using a phenol red thread test (PRTT). PRTT values decreased significantly after 200 µg/kg medetomidine administration. The PRTT values after 800 (optimal dose to reverse) and 1600 µg/kg atipamezole administration reached baseline, but never exceeded it significantly. Treatment with 400 µg/kg atipamezole also reversed the decrease in PRTT value but the PRTT remained lower than baseline. The optimal dose and the higher dose of atipamezole fully reversed the medetomidine-induced decrease in tear flow to the baseline level in rats, while the lower dose of atipamezole partially recovered tear flow.


Sign in / Sign up

Export Citation Format

Share Document