Bidirectional Neurones in the Cervical Enlargement of the Cat Spinal Cord with Axons Descending to Sacral Segments and Ascending to the Cerebellum and the Lateral Reticular Nucleus

1999 ◽  
Vol 84 (6) ◽  
pp. 1059-1071 ◽  
Author(s):  
K. Grottel ◽  
P. Krutki ◽  
W. Mrówczynski
2020 ◽  
Author(s):  
Iliodora V. Pop ◽  
Felipe Espinosa ◽  
Megan Goyal ◽  
Bishakha Mona ◽  
Mark A. Landy ◽  
...  

AbstractProprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways develop and are wired. Proprioceptive and cutaneous information from the periphery is sent to secondary neurons in the spinal cord that integrate and relay this information to the cerebellum either directly or indirectly through the medulla. Defining the anatomy of these direct and indirect pathways is fundamental to understanding how proprioceptive circuits function. Here, we use genetic tools in mice to define the developmental origins and unique anatomical trajectories of these pathways. Developmentally, we find that Clarke’s column (CC) neurons, a major contributor to the direct spinocerebellar pathway, derive from the Neurog1 progenitor domain. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus (spino-LRt) and spino-olivary pathways, are derived from the Atoh1 progenitor domain, despite previous evidence that Atoh1-lineage neurons form the direct pathway. Anatomically, we also find that the mossy fiber terminals of CC neurons diversify extensively with some axons terminating bilaterally in the cerebellar cortex. Intriguingly, we find that CC axons do not send axon collaterals to the medulla or cerebellar nuclei like other mossy fiber sources. Altogether, we conclude that the direct and indirect spinocerebellar pathways derive from distinct progenitor domains in the developing spinal cord and that the proprioceptive information from CC neurons is processed only at the level of granule cells in the cerebellum.Significance StatementWe find that a majority of direct spinocerebellar neurons in mice originate from Clarke’s column (CC), which derives from the Neurog1-lineage, while few originate from Atoh1-lineage neurons as previously thought. Instead, we find that spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts. Moreover, we observe that mossy fiber axon terminals of CC neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides without sending axon collaterals to the medulla or cerebellar nuclei. Altogether, we define the development and the anatomical projections of direct and indirect pathways to the cerebellum from the spinal cord.


1984 ◽  
Vol 52 (4) ◽  
pp. 595-611 ◽  
Author(s):  
D. Menetrey ◽  
J. de Pommery ◽  
J. M. Besson

Spinal neurons antidromically activated from either the lateral reticular nucleus (LRN) or immediately adjacent areas were identified in the rat lumbar spinal cord. In agreement with previous anatomical work (60), these neurons were widely distributed in both the dorsal and ventral horns of the spinal cord and could be subdivided into three main groups according to their location: a) deep ventromedial (DVM) cells, which project more substantially to the LRN than to other supraspinal targets; b) cells of the median portion of the neck of the dorsal horn (mNDH), which project exclusively to the LRN; c) cells lying in other parts of the dorsal horn (superficial layers, nucleus proprius, reticular extension of the neck), by their location, they are indistinguishable from cells projecting to other supraspinal targets. The probability is high that the DVM and mNDH cells contribute exclusively, or at least preferentially, to the lateral component of the spinoreticular tract (lSRT), defined as the direct spinal pathway to the LRN. Although electrophysiological properties of cells were clearly related to their spinal location, several subpopulations could be recognized in each of the three main groups. The majority of DVM neurons were in lamina VII, with some in laminae VI, VIII, and X. With the exception of a few lamina X cells, the DVM neurons had high conduction velocities. Four subpopulations of these neurons were recognized. a) Innocuous proprioceptive cells responded to small changes in joint position, some showing convergence of nonnoxious cutaneous inputs. b) High-threshold cells (approximately 50% of DVM cells). Seventy-five percent of these cells were excited from bilateral receptive fields (mostly symmetric) with noxious cutaneous pinching that extended to subcutaneous tissues. Their evoked responses had long-lasting postdischarges that continued up to several minutes after cessation of the stimulus. c) Inhibited cells had no demonstrable excitatory receptive fields and a high ongoing activity that was tonically depressed by pressure or pinch; poststimulus effects of long duration were observed. d) Cells with no resting discharge and demonstrable excitatory peripheral receptive fields. mNDH cells had recording sites at the medial border of the internal portion of the reticular area of the neck of the dorsal horn.(ABSTRACT TRUNCATED AT 400 WORDS)


1971 ◽  
Vol 2 (6) ◽  
pp. 439-443 ◽  
Author(s):  
Yu. I. Arshavskii ◽  
M. B. Berkinblit ◽  
I. M. Gel'fand ◽  
O. I. Fukson

Sign in / Sign up

Export Citation Format

Share Document