periaqueductal gray
Recently Published Documents


TOTAL DOCUMENTS

1807
(FIVE YEARS 197)

H-INDEX

98
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kinga Gecse ◽  
Dóra Dobos ◽  
Csaba Sándor Aranyi ◽  
Attila Galambos ◽  
Daniel Baksa ◽  
...  

AbstractAltered periaqueductal gray matter (PAG) functional connectivity contributes to brain hyperexcitability in migraine. Although tryptophan modulates neurotransmission in PAG projections through its metabolic pathways, the effect of plasma tryptophan on PAG functional connectivity (PAG-FC) in migraine has not been investigated yet. In this study, using a matched case-control design PAG-FC was measured during a resting-state functional magnetic resonance imaging session in migraine without aura patients (n = 27) and healthy controls (n = 27), and its relationship with plasma tryptophan concentration (TRP) was assessed. In addition, correlations of PAG-FC with age at migraine onset, migraine frequency, trait-anxiety and depressive symptoms were tested and the effect of TRP on these correlations was explored. Our results demonstrated that migraineurs had higher TRP compared to controls. In addition, altered PAG-FC in regions responsible for fear-cascade and pain modulation correlated with TRP only in migraineurs. There was no significant correlation in controls. It suggests increased sensitivity to TRP in migraine patients compared to controls. Trait-anxiety and depressive symptoms correlated with PAG-FC in migraine patients, and these correlations were modulated by TRP in regions responsible for emotional aspects of pain processing, but TRP did not interfere with processes that contribute to migraine attack generation or attack frequency.


2022 ◽  
Vol 15 ◽  
Author(s):  
Xixiao Zhu ◽  
Yingling Xu ◽  
Zui Shen ◽  
Haiyan Zhang ◽  
Siqi Xiao ◽  
...  

Neuropathic pain is a common cause of chronic pain and is often accompanied by negative emotions, making it complex and difficult to treat. However, the neural circuit mechanisms underlying these symptoms remain unclear. Herein, we present a novel pathway associated with comorbid chronic pain and anxiety. Using chemogenetic methods, we found that activation of glutamatergic projections from the rostral anterior cingulate cortex (rACCGlu) to the ventrolateral periaqueductal gray (vlPAG) induced both hyperalgesia and anxiety-like behaviors in sham mice. Inhibition of the rACCGlu-vlPAG pathway reduced anxiety-like behaviors and hyperalgesia in the spared nerve injury (SNI) mice model; moreover, electroacupuncture (EA) effectively alleviated these symptoms. Investigation of the related mechanisms revealed that the chemogenetic activation of the rACCGlu-vlPAG circuit effectively blocked the analgesic effect of EA in the SNI mice model but did not affect the chronic pain-induced negative emotions. This study revealed a novel pathway, the rACCGlu-vlPAG pathway, that mediates neuropathic pain and pain-induced anxiety.


2022 ◽  
Author(s):  
Peter Kirk ◽  
Avram J Holmes ◽  
Oliver Joe Robinson

A well documented amygdala-dorsomedial prefrontal circuit is theorized to promote attention to threat (‘threat vigilance’). Prior research has implicated a relationship between individual differences in trait anxiety/vigilance, engagement of this circuitry, and anxiogenic features of the environment (e.g. through threat-of-shock and movie-watching). In the present study, we predicted that—for those scoring high in self-reported anxiety and a behavioral measure of threat vigilance—this circuitry is chronically engaged, even in the absence of anxiogenic stimuli. Our analyses of resting-state fMRI data (N=639) did not, however, provide evidence for such a relationship. Nevertheless, in our planned exploratory analyses, we saw a relationship between threat vigilance behavior (but not self-reported anxiety) and intrinsic amygdala-periaqueductal gray connectivity. Here, we suggest this subcortical circuitry may be chronically engaged in hypervigilant individuals, but that the amygdala-prefrontal circuitry may only be engaged in response to anxiogenic stimuli.


2022 ◽  
Author(s):  
Myrthe G. Rijpma ◽  
Winson F.Z. Yang ◽  
Gianina Toller ◽  
Giovanni Battistella ◽  
Arseny A. Sokolov ◽  
...  

2022 ◽  
Vol 417 ◽  
pp. 113588
Author(s):  
Luana Tenorio Lopes ◽  
Lucas Canto-de-Souza ◽  
Daniela Baptista-de-Souza ◽  
Rimenez Rodrigues de Souza ◽  
Ricardo L. Nunes-de-Souza ◽  
...  

2021 ◽  
Author(s):  
Emmy F Tsang ◽  
Camilla Orlandini ◽  
Rahul Sureka ◽  
Alvaro H Crevenna ◽  
Emerald Perlas ◽  
...  

The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low or high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal gray to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.


2021 ◽  
Vol 0 (0) ◽  
pp. 1-20
Author(s):  
Iraj Mirzaii-Dizgah ◽  
◽  
Mohammad Naser Shafei ◽  
Reza Mohebbati ◽  
Vida Alikhani ◽  
...  

Introduction: The central mechanism responsible for cardiovascular response to lipopolysaccharide (LPS) - induced hypotension is not completely determined and it is suggested numerous brain areas such as dorsal periaqueductal gray (dPAG) are involved. In this study the cardiovascular effect of the dPAG during LPS-induced hypotension was evaluated. Methods: Twenty male Wistar rats divided into four groups including 1) Control (Saline microinjected into dPAG), 2) Lidocaine 2%, 3) LPS (intravenously injected), and 4) Lidocaine + LPS were used. Catheterization of the femoral artery and vein was performed for the recording of blood pressure and LPS injection, respectively. Saline and lidocaine were microinjected into the dPAG nucleus then, LPS injection was done. Cardiovascular responses throughout of experiments were recorded and changes (∆) of systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were calculated over time and was compared with those control and LPS groups, using repeated measures ANOVA. Results: LPS significantly reduced ∆SBP and ∆MAP (P<0.05) and did not change the ∆HR than the control group. Lidocaine did not significantly affect basic ∆SBP, ∆MAP and ∆HR compared to the control. Injection of lidocaine before LPS significantly attenuated reduction of ∆SBP and ∆MAP evoked by LPS (P<0.05). Conclusion: Our data showed that blockade of the dPAG by lidocaine significantly ameliorates the hypotension induced by LPS. It confirms involvement of the dPAG in cardiovascular regulation during LPS-induced hypotension.


2021 ◽  
Vol 25 (4) ◽  
pp. 334-340
Author(s):  
Reza Mohebbati ◽  
Reza Nejad Shahrokh Abadi ◽  
Vida Alikhani ◽  
Mohammad Naser Shafei ◽  
◽  
...  

2021 ◽  
Vol 35 (12) ◽  
pp. 1523-1535
Author(s):  
Matheus F Batistela ◽  
Heloísa H Vilela-Costa ◽  
Alana T Frias ◽  
Paloma M Hernandes ◽  
Thelma A Lovick ◽  
...  

Background: Acute hypoxia, which is panicogenic in humans, also evokes panic-like behavior in male rats. Panic disorder is more common in women and susceptibility increases during the premenstrual phase of the cycle. Aims: We here investigated for the first time the impact of hypoxia on the expression of panic-like escape behavior by female rats and its relationship with the estrous cycle. We also evaluated functional activation of the midbrain panic circuitry in response to this panicogenic stimulus and whether short-term, low-dose fluoxetine treatment inhibits the hyper-responsiveness of females in late diestrus. Methods: Male and female Sprague Dawley rats were exposed to 7% O2. Females in late diestrus were also tested after short-term treatment with fluoxetine (1.75 or 10 mg/kg, i.p.). Brains were harvested and processed for c-Fos and tryptophan hydroxylase immunoreactivity in the periaqueductal gray matter (PAG) and dorsal raphe nucleus (DR). Results: Acute hypoxia evoked escape in both sexes. Overall, females were more responsive than males and this is clearer in late diestrus phase. In both sexes, hypoxia induced functional activation (c-Fos expression) in non-serotonergic cells in the lateral wings of the DR and dorsomedial PAG, which was greater in late diestrus than proestrus (lowest behavioral response to hypoxia). Increased responding in late diestrus (behavioral and cellular levels) was prevented by 1.75, but not 10 mg/kg fluoxetine. Discussion: The response of female rats to acute hypoxia models panic behavior in women. Low-dose fluoxetine administered in the premenstrual phase deserves further attention for management of panic disorders in women.


Sign in / Sign up

Export Citation Format

Share Document